Page 114 - Elementary Algebra Exercise Book I
P. 114

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities




                1  +  1  +  1  ≥ 3  3  1     , (a+1)+(b+1)+(c+1) ≥ 3  3  (a + 1)(b + 1)(c + 1)
               a+1  b+1  c+1      (a+1)(b+1)(c+1)                                                    1     1    1                                      1        3
                                                                                          Therefore,  (  +   +    )[(a+1)+(b+1)+(c+1)] ≥ 3     3              ·3  (a + 1)(b + 1)(c + 1) =
                                                                                                    a+1   b+1  c+1                               (a+1)(b+1)(c+1)
               (  1  +  1  +  1  )[(a+1)+(b+1)+(c+1)] ≥ 3  3   1      ·3  3  (a + 1)(b + 1)(c + 1) = 9 . Since
                a+1  b+1  c+1                            (a+1)(b+1)(c+1)
            9
                                         1  +   1  +  1            9            9  =  3
               0 <a + b + c ≤ 3, then  a+1     b+1   c+1  ≥  (a+1)+(b+1)+(c+1)  ≥  3+3  2 .
               3.79      Given a, b, c, m, n, p > 0, and a + m = b + n = c + p = R , show an + bp + cm < R     2

 an + bp + cm < R .
                    2
               Proof: Construct an equilateral triangle  ABC  with side length  R . Choose points

               D,E,F  on sides  AB, BC, CA  respectively such that

               AD = a, DB = m, BE = c, EC = p, CF = b, FA = n . In this way, three side lengths are

               a + m, c + p, b + n , and  a + m = c + p = b + n = R . Connect  D  with  E , connect  E

               with  F , and connect  F  with  D . Let  S  ADF = S 1 ,S  BDE = S 2 ,S  CEF = S 3 ,S  ABC = S

                                                                                                 √
                                                                                    1
                                                        1
                                                                     1
                                                                               0
                                                                 0
                                                                                             0
 S  ADF = S 1 ,S  BDE = S 2 ,S  CEF = S 3 ,S  ABC = S . Then  S 1 + S 2 + S 3 = an sin 60 + cm sin 60 + bp sin 60 =  3 (an + cm + bp)
                                                        2            2              2             4
       √                                     √
                               1
 1
 1
 1
 0
 0
                                  2
                                         0
  0
                                                  2
 S 1 + S 2 + S 3 = an sin 60 + cm sin 60 + bp sin 60 =  3 (an + cm + bp).  S = R sin 60 =  3 R .  S = S 1 + S 2 + S 3 + S  DEF >S 1 + S 2 + S 3 , thus
 2  2  2  4                    2              4
                √                    √
                 3 (an + cm + bp) <   3 R , that is,  an + bp + cm < R .
                                                                      2
                                         2
                4                     4
                                                                                                 2
               3.80      Let x 1 ,x 2 , ··· ,x n are positive numbers, show  x 2 1  +  x 2 2  + ··· +  x 2 n−1  +  x n  ≥ x 1 + x 2 + ··· + x n
                                                                         x 2  x 3         x n   x 1
 x 2  x 2  x 2  2
 1  +  2  + ··· +  n−1  +  x n  ≥ x 1 + x 2 + ··· + x n .
 x 2  x 3  x n  x 1
                                                                               2         2    2             x 2 1
               Proof 1: Since x 1 ,x 2 , ··· ,x n > 0 , we can do the following: (x 1 − x 2 ) ≥ 0 ⇒ x + x ≥ 2x 1 x 2 ⇒  x 2  + x 2 ≥ 2x 1

                                                                                              2
                                                                                         1
 2  2  2        x 2 1                                  x 2 2             x 2 n−1            x n 2
 (x 1 − x 2 ) ≥ 0 ⇒ x + x ≥ 2x 1 x 2 ⇒  x 2  + x 2 ≥ 2x 1. Similarly, we can obtain  x 3  + x 3 ≥ 2x 2 , ··· ,  x n  + x n ≥ 2x n−1 ,  x 1  + x 1 ≥ 2x n
  2
 1
                                                                                2
                                                                    2
                                                                               x
                                                                                       2
                                                                   x
                                                             x
               . Add them up to obtain ( x 2 1  +  x 2 2  + ··· +  x 2 n−1  ( + 1 2  x n 2  ) +(x 1 + x 2 + ··· + x n ) ≥ 2(x 1 + x 2 + ··· + x n ) ⇒
                                                                                   +
                                                                      + ··· +
                                                                +
                                                                                n−1
                                                                    2
                                                                                      x n
                                                                                        ) +(x 1 + x 2 + ··· + x n ) ≥ 2(x 1 + x 2 + ··· + x n ) ⇒
                                       x 2 2  x 3  2     x n  x 2  x 1  x 3     x n   x 1
                                   2
                                                  x
                                       x
                                  x
                                          + ··· +
                                        2
                                                   n−1
                                   1
                                                            ≥ x 1 + x 2 + ··· + x n ≥ x 1 + x 2 + ··· + x n.
 ( x 2 1  +  x 2 2  + ··· +  x  2 n−1  +  x n 2  ) +(x 1 + x 2 + ··· + x n ) ≥ 2(x 1 +  + x 2 + ··· + x n ) ⇒ +  x x 1 2 2 n  +  x 2 2  + ··· +  x 2 n−1  +  x 2 n
                                                         x 1
 x 2  x 3  x n  x 1               x 2  x 3         x n     x 2  x 3       x n   x 1
 x  2 1  +  x 2 2  + ··· +  x 2 n−1  +  x 2 n
               Proof 2: Mean Inequality implies that      1  + x 2 ≥ 2   1  · x 2 =2x 1  . Similarly, we have
 x 2  x 3  x n  x 1  ≥ x 1 + x 2 + ··· + x n             x 2            x 2
                                                         x 2            x 2
                                                        2
               x 2 2  + x 3 ≥ 2x 2 , ··· ,  x  2 n−1  + x n ≥ 2x n−1 ,  x n  + x 1 ≥ 2x n . Add them up to obtain the result.
               x 3                  x n                x 1
                                                              2
                                                                                        2
                                                                      2
                                                        2
                         2
               Proof 3:   x n  +  x 2 1  +  x 2 1  +  x 2 2  + ···+  x 2 n−1  +  x n  = 2  x n +x 2 1  +  x +x 2 2  + ···+  x  2 n−1 2 +x n  ≥ 2(  x 1x n  +  x 1 x 2  +
                                                                      1
                           2
                                2
                                                                                 2
                                                                   2
                                                               2
                                                                      2
                                     2
                                               2
                                                      2
                      2
                               x
                          x
                                                  +
                                                                                                       +
                                                        =
                                                                                                 +
                            +
                             x 1
                                1
                                  x 2
                     x n  +  x n−1 x n +  x 2  + ···+  x n−1 x n x n  x n  x n +x 1 x 1 +  x +x 2 x 2 + ···+  x  n−1 +x x n n  ≥ 2(  x 1x n x 1 x 1 x 2 x 2
                        x 1
                           1
                                      x 2
                                                                   1
                                               x n
                                                     x n
 2  2  2  2  x 2  2  2  2  2  2  x 2  2  ··· + x 1  x 2 ) = 2(x 1 + x 2 + ··· + x n )  x 1  x 2  x n  x 1  x 2
                     x 1
                                    x 2
 +  +  +  + ···+  +  =  +  + ···+  ≥ 2(  +  + ··· +  x n ) = 2(x 1 + x 2 + ··· + x n ) which implies the result.
 1
 x n  x 1  x 1  x 2  n−1  x n  x n +x 1  x +x 2  n−1  +x n  x 1x n  x 1 x 2  x n−1 x n
 x 1  x 1  x 2  x 2  x n  x n  x 1  x 2  x n  x 1  x 2  x n
 ··· +  x n−1 x n  ) = 2(x 1 + x 2 + ··· + x n )
 x n
               Proof 4:    x 2 1  +  x 2 2  + ··· +  x 2 n−1  +  x n 2  =  [x 2−(x 2 −x 1)] 2  +  [x 3−(x 3 −x 2)]  2  + ··· +  [x n−(x n−x n−1)] 2  +.
                           x 2  x 3         x n   x 1        x 2           x 3                 x n
                        [x 1−(x 1 −x n)] 2
                                   =(x 2 + x 3 + ··· + x n + x 1 ) − 2(x 2 − x 1 + x 3 − x 2 + ··· + x n − x n−1 + x 1 −
                            x 1    2         2               2         2                              2
                       x n )+  (x 2 −x 1)  +  (x 3 −x 2)  + ··· +  (x n−x n−1)  +  (x 1 −x n)  =(x 1 + x 2 + ··· + x n )+  (x 2 −x 1)  +
                                x 2      x 3             x n        x 1                            x 2
                        (x 3 −x 2) 2   (x 1 −x n) 2
                               + ··· +        ≥ x 1 + x 2 + ··· + x n
                          x 3            x 1
                                            Download free eBooks at bookboon.com
                                                            114
   109   110   111   112   113   114   115   116   117   118   119