Page 95 - Elementary Algebra Exercise Book I
P. 95

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities



                                                    √                  √
               3.18    If  a, b, c > 0, show  2(  a+b  −  ab) ≤ 3( a+b+c  −  3  abc).
                                               2                 3
                              √                 √                 √                  √             √
                                                                                  √
                                                                                                √
                                                               √
                                                                                      3
                                                 3
               Proof: 2( a+b √ − ab) ≤ 3(  a+b+c √ − abc) ⇔ a+b−2 ab ≤ a+b+c−3 abc ⇔ c+2 ab ≥
                                             3
                                     a+b+c
                                                                                   3
                     a+b
                  2( √   2 − ab) ≤ 3(      3 − abc) ⇔ a+b−2 ab ≤ a+b+c−3 abc ⇔ c+2 ab ≥
                    3 2
                √  3 abc               3                                       √          √       √            √     √        √
                                                                                                           3
                                                                                                                              3
                 3
               3 abc  .  We only need to show the last inequality.  c +2 ab = c +           ab +    ab ≥ 3   c ·  ab ·  ab =3 abc
 √  √   √             √     √        √
                                     3
 c +2 ab = c +  ab +  ab ≥ 3  3  c ·  ab ·  ab =3 abc .
                                                     x+3
                                                     2
               3.19    Given the function  f(x) =   4 +8 , (1) find the maximum value of  f(x), (2) show
                                                     x
                        2
                f(a) <b − 4b +   11  for any real numbers  a, b .
                                  2
                                                                       √                     √
                                      x+3
                                                                  8
                                     2
               Solution: (1)  f(x) =  4 +8  =  x  8  8 ≤ √ 8  8  =  √ =  2, thus  f(x) max =   2.
                                      x
                                                         x
                                             2 + x
                                                2     2  2 · x   4 2
                                                           2
                                √                                          √
                                                                                                        11
                                                                                               2
                                                              2
                                         2
               (2) Since f(a) ≤   2 and b − 4b +  11  =(b − 2) +  3  ≥  3 2  >  2, we have f(a) <b − 4b +
                                                  2
                                                                                                         2
                                                                  2
               for any real numbers  a, b .
                                 √                                          √
               3.20    Show  2( n +1 − 1) < 1+ √ + √ + ··· + √ < 2 n  for any  n ∈ N .
                                                                      1
                                                     1
                                                           1
                                                      2    3           n
                                                 √         √
                                                                                1
                              2
                                                                                     1
                                       2
                       1
               Proof:   √ =  2 k     k+ k+1  = 2( k +1 −     k) . Let   m = 1+ √ + √ + ··· + √   1 n ,
                                       √
                             √ > √
                                                                                      3
                        k
                                                                                2
                            √        √     √           √         √        √
               then  m> 2( 2 − 1+      3 −   2+ ··· +    n +1 −    n) = 2( n +1 − 1),
                                   √         √    √           √     √           √
               and  m< 2(1 − 0+      2 − 1+   3 −   2+ ··· +    n −   n − 1) = 2 n .
                         √                                          √
                                             1
                                                   1
                                                              1
               Hence,  2( n +1 − 1) < 1+ √ + √ + ··· + √ < 2 n
                                              2    3          n
                                          2
                                     2
                                2
                                                         1
               3.21    Given  a + b + c =1, show  − ≤ ab + bc + ca ≤ 1.
                                                         2
                                                    2
                                                                                                            2
                                           2
                                                                                                                     2
                                                         2
                                                                                                                 2
                                      2
                            2
                       2
               Proof:  a + b ≥ 2ab, b + c ≥ 2bc, c + a ≥ 2ca , add them up to obtain  ab + bc + ca ≤ a + b + c =1

                                                                          2
                        2
                                                       2
   ab + bc + ca ≤ a + b + c =1 . Since  (a + b + c) ≥ 0 ,  a + b + c + 2(ab + bc + ca) ≥ 0 , then
                   2
                                                                     2
                                                                 2
                             2
                                                     1
               ab + bc + ca ≥− (a + b + c )= − , thus  − ≤ ab + bc + ca ≤ 1.
                                 1
                                                               1
                                         2
                                              2
                                    2
                                 2                   2         2
                                                    c
                                                                b
                                                                      3
                                                          a
               3.22     Given  a, b, c > 0, show   a+b  +  b+c  +  c+a  ≥ .
                                                                      2
                                                                                                1
                      c
                                                                                   1
                                   b
                                                                                         1
                                         a+b+c
                             a
                                      =
               Proof:  a+b  + a b+c  + b c+a a+b+c  +  a+b+c  +  a+b+c  − 3 = (a + b + c)( 1 a+b  + 1  b+c  + 1 c+a ) − 3=
                                                       a+b+c
                                                  b+c
                                               a+b+c
                                                          c+a
                                          a+b
                    c
                                                                                   +
                                                                                                ) − 3=
                       +
                             +
                                                                                          +
                                            + a+b+c
                                                     + a+b+c
                                                                                              1
                          a
                                                             − 3 = (a + b + c)( 1
                                 b
                    c
                                                                                       1
                                    = a+b+c
                                                                                  3 +
                  1 a+b +  b+c +  c+a =  a+b +  b+c 1 +  c+a −  1 3 = (a + b + c)(  a+b  b+c +  c+a) − 3=
                                                          1
                                                                             1
                   [(a + b)+(b + c) +(c + a)](
                                                            +
                                                                                      b+c
                                                                                            c+a
                                                                              · 3   a+b
                1 [(a a+b  b+c  c+a    a+b      b+c a+b  + c+a +  1  c+a ) − 3 ≥ 1  2    (a + b)(b + c)(c + a) ·
                                                         b+c
                                                        1
                  2
                                                 1
                                                    +
                                                                               3
                1    + b)+(b + c) +(c + a)]( 1         b+c +  c+a) − 3 ≥  2 · 3  (a + b)(b + c)(c + a) ·
                                                        1
                                                              1
                                                                ) − 3 ≥ 1
                                                                            · 3 3
                                                a+b +
                2[(a + b)+(b + c) +(c + a)](
                                                                                 (a + b)(b + c)(c + a) ·
                                                a+b
                2    3  1   1    1  − 3=  9  − 3=  3   b+c   c+a          2
                  3      ·    ·
                 3  1 a+b 1  b+c 1 c+a  9  2     3  2
                         1
                                          − 3= 3
                    1
                              1
                                 − 3= 9
               3
               3 3  a+b · ·  b+c · ·  c+a − 3=  2 − 3= .
                                                 2
                   a+b  b+c  c+a        2        2
                                          √
               3.23 Solve the inequality    2x +5 >x +1.
                                                                                      5
               Solution: To make the square root valid, we need  2x +5 ≥ 0 ⇔ x ≥− . When  x +1 < 0,
                                                                                      2
                                      √
               i.e.  x< −1, we have     2x +5 ≥ 0 >x +1, thus the original inequality has the solution
               − ≤ x< −1. When x ≥−1, the original inequality has the solution −1 ≤ x< 2. The union
                 5
                 2
                                                                                             5
               of these two solution sets provides the solution of the original inequality:  {x|−  ≤ x< 2}.
                                                                                             2
                                            Download free eBooks at bookboon.com
                                                            95
   90   91   92   93   94   95   96   97   98   99   100