Page 93 - Elementary Algebra Exercise Book I
P. 93

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities


                                    √
                                                 3
               3.13 The inequality    x > ax +  has the solution set  {x|4 <x< b} , find the values of
                                                 2
               a  and  b .
                          √                   √       √
                                                  2
               Solution:    x > ax +   3  ⇔ a( x) −     x +  3  < 0 . The solution set  {x|4 <x< b}  is
                                       2                    2
                                     √     √
               equivalent to  {x|2 <   x<    b} . Vieta’s formulas imply
                                                         √        1
                                                     2+    b =
                                                                  a
                                                         √        3
                                                        2 b =
                                                                  2a
                                                          a> 0
               ⇒ a = ,b = 36.
                       1
                       8
                                          2
               3.14 If the inequality  x − ax − 6a ≤ 0  has solutions, and the two roots  x 1 ,x 2  of
               x − ax − 6a =0 satisfy  |x 1 − x 2 |≤ 5. Find the range of the real number  a .
                 2
                                                                       2
               Solution: The inequality has solutions if and only if  Δ= a + 24a ≥ 0 ⇔ a ≥ 0 or  a ≤−24.
               Vieta’s formulas imply

                                                    x 1 + x 2 = a
                                                       x 1 x 2 = −6a
                                                                    √
                                                                       2
                                       2
                                                       2
                |x 1 − x 2 | =  (x 1 − x 2 ) =  (x 1 + x 2 ) − 4x 1 x 2 =  a + 24a ≤ 5, that is
                 2
               a + 24a − 25 ≤ 0 ⇒ (a + 25)(a − 1) ≤ 0 ⇒−25 ≤ a ≤ 1.
               As a conclusion,  a  has the range:  −25 ≤ a ≤−24 or  0 ≤ a ≤ 1.
               3.15   If 0 <a < 1, 0 <b< 1, 0 <c < 1 , show it is impossible that (1 − a)b, (1 − b)c, (1 − c)a

               are all greater than  1/4.

               Proof 1: We prove the conclusion by contraction. Suppose
               (1 − a)b> , (1 − b)c> , (1 − c)a> . Multiply them to obtain
                                       1
                          1
                                                    1
                          4            4            4
               abc(1 − a)(1 − b)(1 − c) >  1 . On the other hand,                  1−a+a 2    1 , similarly
                                          64                      0 < (1 − a)a ≤ [       ] =
                                                                                     2        4
               we have  0 < (1 − b)b ≤ , 0 < (1 − c)c ≤ ≤ . Multiply them to obtain
                                                          1 1
                                        1 1
                                            , 0 < (1 − c)c
                         0 < (1 − b)b ≤
                                        4 4               4 4
                                           1
               abc(1 − a)(1 − b)(1 − c) ≤    , a contractions.
                                           64
                                                                                                 2
                                                                            2
                                                                                      2
               Proof 2: Since 0 <a < 1, 0 <b< 1, 0 <c < 1, we let a = sin α, b = sin β, c = sin γ , then
                                                                 2
                                                                       2
                                                                             2
                                                                                   2
                                                                                               2
                                                                                         2
               (1−a)b·(1−b)c·(1−c)a = abc(1−a)(1−b)(1−c) = sin α sin β sin γ cos α cos β cos γ =
                                                                    2
                                                                                2
                                                                          2
                                                                                            2
                                                                                      2
                                                                                                  2
                                      1
                               2
                        2
            1    2 (1−a)b·(1−b)c·(1−c)a = abc(1−a)(1−b)(1−c) = sin α sin β sin γ cos α cos β cos γ =
            64  sin 2α sin 2β sin 2γ ≤  64  1 ,  thus  it  is impossible that  (1 − a)b, (1 − b)c, (1 − c)a   are  all
                                  2
                           2
                    2
                1
               64  sin 2α sin 2β sin 2γ ≤  64
               greater than  1/4.
                                            Download free eBooks at bookboon.com
                                                            93
   88   89   90   91   92   93   94   95   96   97   98