Page 84 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 84

Document Title
                Fundamentals of Stress and Vibration                                  Chapter Title
                [A Practical guide for aspiring Designers / Analysts]              2. Engineering Mechanics


                 Ї ’‘–‡–‹ƒŽ Ž‘•– „› –Ї …›Ž‹†‡” ‹• ƒ• •Š‘™ ‹ ȏ ‹‰ ʹǤ͹ʹȐ





















                                     [Fig 2.72: vertical displacement of the CG of the cylinder]

                The potential energy lost is given by:

                 Potential Energy = Transational Kinetic Energy + Rotational Kinetic Energy

                                          1        1         1           1 mr  2          3
                                               2
                                                                                    2
                                                                                               2 2
                                                       2
                                                                   2 2
                 mg  R + r  1 − cos θ   =    mv +  Iω   =    m ω r   + ∗         ∗ ω   =    mω r
                                          2        2         2           2    2           4
                                4g R + r  1 − cos θ
                            2
                By where,  ω =
                                        3r 2
                Since  mg cos θ  is just balanced by the centrifugal force, as shown in [Fig 2.71], we have:
                            4g R + r  1 − cos θ
                 mg cos θ =                       ∗ m(R + r)
                                    3r 2

                                                  2
                                         4g R + r   1 − cos θ
                By where, we get   cos θ =                      - - - - (2.66)
                                                 3r 2
                                                      4g R + r  2
                For ease of simplification, let as assume       = k  , and rewritting equation    .      , we get:
                                                         3r 2

                 cosθ =  k 1 − cos θ   =  k − k cos θ


                                                           k                           k
                Upon further simplification, we get:  cosθ =    , therefore,  θ = cos −1
                                                         1 + k                       1 + k








                   Page 84      QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
   79   80   81   82   83   84   85   86   87   88   89