Page 1170 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1170

1019.e10  Part VII  Hematologic Malignancies


        400.  Koppikar P, Bhagwat N, Kilpivaara O, et al: Heterodimeric JAK-STAT   425.  Quesnel B, Preudhomme C, Philippe N, et al: p16 gene homozygous
            activation  as  a  mechanism  of  persistence  to  JAK2  inhibitor  therapy.   deletions in acute lymphoblastic leukemia. Blood 85(3):657–663, 1995.
            Nature 489(7414):155–159, 2012.                   426.  Rasool O, Heyman M, Brandter LB, et al: p15ink4B and p16ink4 gene
        401.  Marubayashi S, Koppikar P, Taldone T, et al: HSP90 is a therapeutic   inactivation in acute lymphocytic leukemia. Blood 85(12):3431–3436,
            target  in  JAK2-dependent  myeloproliferative  neoplasms  in  mice  and   1995.
            humans. J Clin Invest 120(10):3578–3593, 2010.    427.  Okuda  T,  Shurtleff  SA,  Valentine  MB,  et al:  Frequent  deletion  of
        402.  Wu SC, Li LS, Kopp N, et al: Activity of the Type II JAK2 Inhibi-  p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lympho-
            tor  CHZ868  in  B  Cell  Acute  Lymphoblastic  Leukemia.  Cancer  Cell   blastic leukemia. Blood 85(9):2321–2330, 1995.
            28(1):29–41, 2015.                                428.  Hirama T, Koeffler HP: Role of the cyclin-dependent kinase inhibitors
        403.  Noguchi  M,  Nakamura  Y,  Russell  SM,  et al:  Interleukin-2  receptor   in the development of cancer. Blood 86(3):841–854, 1995.
            gamma chain: a functional component of the interleukin-7 receptor.   429.  Iolascon A, Faienza MF, Coppola B, et al: Homozygous deletions of
            Science 262(5141):1877–1880, 1993.                    cyclin-dependent  kinase  inhibitor  genes,  p16(INK4A)  and  p18,  in
        404.  Liu YJ, Soumelis V, Watanabe N, et al: TSLP: an epithelial cell cyto-  childhood  T  cell  lineage  acute  lymphoblastic  leukemias.  Leukemia
            kine that regulates T cell differentiation by conditioning dendritic cell   10(2):255–260, 1996.
            maturation. Annu Rev Immunol 25:193–219, 2007.    430.  Cayuela  JM,  Madani  A,  Sanhes  L,  et al:  Multiple  tumor-suppressor
        405.  Zenatti PP, Ribeiro D, Li W, et al: Oncogenic IL7R gain-of-function   gene 1 inactivation is the most frequent genetic alteration in T-cell acute
            mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet   lymphoblastic leukemia. Blood 87(6):2180–2186, 1996.
            43(10):932–939, 2011.                             431.  Takeuchi S, Bartram CR, Seriu T, et al: Analysis of a family of cyclin-
        406.  Shochat C, Tal N, Bandapalli OR, et al: Gain-of-function mutations in   dependent kinase inhibitors: p15/MTS2/INK4B, p16/MTS1/INK4A,
            interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic   and  p18  genes  in  acute  lymphoblastic  leukemia  of  childhood.  Blood
            leukemias. J Exp Med 208(5):901–908, 2011.            86(2):755–760, 1995.
        407.  Mansour  MR,  Reed  C,  Eisenberg  AR,  et al:  Targeting  oncogenic   432.  Heyman M, Rasool O, Borgonovo Brandter L, et al: Prognostic impor-
            interleukin-7 receptor signalling with N-acetylcysteine in T cell acute   tance of p15INK4B and p16INK4 gene inactivation in childhood acute
            lymphoblastic leukaemia. Br J Haematol 168(2):230–238, 2015.  lymphocytic leukemia. J Clin Oncol 14(5):1512–1520, 1996.
        408.  Knudson AG, Jr: Mutation and cancer: statistical study of retinoblas-  433.  Drexler  HG:  Review  of  alterations  of  the  cyclin-dependent  kinase
            toma. Proc Natl Acad Sci USA 68(4):820–823, 1971.     inhibitor  INK4  family  genes  p15,  p16,  p18  and  p19  in  human
        409.  Junttila MR, Evan GI: p53–a Jack of all trades but master of none. Nat   leukemia-lymphoma cells. Leukemia 12(6):845–859, 1998.
            Rev Cancer 9(11):821–829, 2009.                   434.  Inuzuka  H,  Shaik  S,  Onoyama  I,  et al:  SCF(FBW7)  regulates  cel-
        410.  Levine AJ: p53, the cellular gatekeeper for growth and division. Cell   lular apoptosis by targeting MCL1 for ubiquitylation and destruction.
            88(3):323–331, 1997.                                  Nature 471(7336):104–109, 2011.
        411.  Lu WJ,  Amatruda  JF,  Abrams  JM:  p53  ancestry:  gazing  through  an   435.  Mullighan  CG,  Goorha  S,  Radtke  I,  et al:  Genome-wide  analysis
            evolutionary lens. Nat Rev Cancer 9(10):758–762, 2009.  of  genetic  alterations  in  acute  lymphoblastic  leukaemia.  Nature
        412.  Nigro JM, Baker SJ, Preisinger AC, et al: Mutations in the p53 gene   446(7137):758–764, 2007.
            occur  in  diverse  human  tumour  types.  Nature  342(6250):705–708,   436.  Shah S, Schrader KA, Waanders E, et al: A recurrent germline PAX5
            1989.                                                 mutation  confers  susceptibility  to  pre-B  cell  acute  lymphoblastic
        413.  Li FP, Fraumeni JF, Jr, Mulvihill JJ, et al: A cancer family syndrome in   leukemia. Nat Genet 45(10):1226–1231, 2013.
            twenty-four kindreds. Cancer Res 48(18):5358–5362, 1988.  437.  Winandy  S,  Wu  P,  Georgopoulos  K:  A  dominant  mutation  in  the
        414.  Malkin  D,  Li  FP,  Strong  LC,  et al:  Germ  line  p53  mutations  in  a   Ikaros gene leads to rapid development of leukemia and lymphoma.
            familial  syndrome  of  breast  cancer,  sarcomas,  and  other  neoplasms.   Cell 83(2):289–299, 1995.
            Science 250(4985):1233–1238, 1990.                438.  Georgopoulos K, Bigby M, Wang JH, et al: The Ikaros gene is required
        415.  Srivastava  S,  Zou  ZQ,  Pirollo  K,  et al:  Germ-line  transmission  of  a   for  the  development  of  all  lymphoid  lineages.  Cell  79(1):143–156,
            mutated  p53  gene  in  a  cancer-prone  family  with  Li-Fraumeni  syn-  1994.
            drome. Nature 348(6303):747–749, 1990.            439.  Harvey RC, Mullighan CG, Chen IM, et al: Rearrangement of CRLF2 is
        416.  Frebourg T, Friend SH: Cancer risks from germline p53 mutations. J   associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/
            Clin Invest 90(5):1637–1641, 1992.                    Latino ethnicity, and a poor outcome in pediatric B-progenitor acute
        417.  Hsiao MH, Yu AL, Yeargin J, et al: Nonhereditary p53 mutations in   lymphoblastic leukemia. Blood 115(26):5312–5321, 2010.
            T-cell  acute  lymphoblastic  leukemia  are  associated  with  the  relapse   440.  van  Noort  M,  Clevers  H:  TCF  transcription  factors,  mediators  of
            phase. Blood 83(10):2922–2930, 1994.                  Wnt-signaling  in  development  and  cancer.  Dev  Biol  244(1):1–8,
        418.  Diccianni  MB,  Yu  J,  Hsiao  M,  et al:  Clinical  significance  of  p53   2002.
            mutations  in  relapsed  T-cell  acute  lymphoblastic  leukemia.  Blood   441.  Yochum  GS,  Cleland  R,  Goodman  RH:  A  genome-wide  screen  for
            84(9):3105–3112, 1994.                                beta-catenin  binding  sites  identifies  a  downstream  enhancer  element
        419.  Wada M, Bartram CR, Nakamura H, et al: Analysis of p53 mutations   that controls c-Myc gene expression. Mol Cell Biol 28(24):7368–7379,
            in a large series of lymphoid hematologic malignancies of childhood.   2008.
            Blood 82(10):3163–3169, 1993.                     442.  He TC, Sparks AB, Rago C, et al: Identification of c-MYC as a target
        420.  Hebert J, Cayuela JM, Berkeley J, et al: Candidate tumor-suppressor   of the APC pathway. Science 281(5382):1509–1512, 1998.
            genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent   443.  Brantjes  H,  Roose  J,  van  De Wetering  M,  et al:  All Tcf  HMG  box
            homozygous  deletions  in  primary  cells  from T-  but  not  from  B-cell   transcription  factors  interact  with  Groucho-related  co-repressors.
            lineage  acute  lymphoblastic  leukemias.  Blood  84(12):4038–4044,   Nucleic Acids Res 29(7):1410–1419, 2001.
            1994.                                             444.  Li L, Leid M, Rothenberg EV: An early T cell lineage commitment
        421.  Fizzotti  M,  Cimino  G,  Pisegna  S,  et al:  Detection  of  homozygous   checkpoint  dependent  on  the  transcription  factor  Bcl11b.  Science
            deletions  of  the  cyclin-dependent  kinase  4  inhibitor  (p16)  gene  in   329(5987):89–93, 2010.
            acute lymphoblastic leukemia and association with adverse prognostic   445.  Wakabayashi  Y,  Watanabe  H,  Inoue  J,  et al:  Bcl11b  is  required  for
            features. Blood 85(10):2685–2690, 1995.               differentiation and survival of alphabeta T lymphocytes. Nat Immunol
        422.  Haidar MA, Cao XB, Manshouri T, et al: p16INK4A and p15INK4B   4(6):533–539, 2003.
            gene deletions in primary leukemias. Blood 86(1):311–315, 1995.  446.  Ikawa T, Hirose S, Masuda K, et al: An essential developmental check-
        423.  Mullighan  CG,  Miller  CB,  Radtke  I,  et al:  BCR-ABL1  lympho-  point for production of the T cell lineage. Science 329(5987):93–96,
            blastic  leukaemia  is  characterized  by  the  deletion  of  Ikaros.  Nature   2010.
            453(7191):110–114, 2008.                          447.  Li  P,  Burke  S,  Wang  J,  et al:  Reprogramming  of T  cells  to  natural
        424.  Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent   killer-like  cells  upon  Bcl11b  deletion.  Science  329(5987):85–89,
            kinases. Genes Dev 9(10):1149–1163, 1995.             2010.
   1165   1166   1167   1168   1169   1170   1171   1172   1173   1174   1175