Page 1170 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1170
1019.e10 Part VII Hematologic Malignancies
400. Koppikar P, Bhagwat N, Kilpivaara O, et al: Heterodimeric JAK-STAT 425. Quesnel B, Preudhomme C, Philippe N, et al: p16 gene homozygous
activation as a mechanism of persistence to JAK2 inhibitor therapy. deletions in acute lymphoblastic leukemia. Blood 85(3):657–663, 1995.
Nature 489(7414):155–159, 2012. 426. Rasool O, Heyman M, Brandter LB, et al: p15ink4B and p16ink4 gene
401. Marubayashi S, Koppikar P, Taldone T, et al: HSP90 is a therapeutic inactivation in acute lymphocytic leukemia. Blood 85(12):3431–3436,
target in JAK2-dependent myeloproliferative neoplasms in mice and 1995.
humans. J Clin Invest 120(10):3578–3593, 2010. 427. Okuda T, Shurtleff SA, Valentine MB, et al: Frequent deletion of
402. Wu SC, Li LS, Kopp N, et al: Activity of the Type II JAK2 Inhibi- p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lympho-
tor CHZ868 in B Cell Acute Lymphoblastic Leukemia. Cancer Cell blastic leukemia. Blood 85(9):2321–2330, 1995.
28(1):29–41, 2015. 428. Hirama T, Koeffler HP: Role of the cyclin-dependent kinase inhibitors
403. Noguchi M, Nakamura Y, Russell SM, et al: Interleukin-2 receptor in the development of cancer. Blood 86(3):841–854, 1995.
gamma chain: a functional component of the interleukin-7 receptor. 429. Iolascon A, Faienza MF, Coppola B, et al: Homozygous deletions of
Science 262(5141):1877–1880, 1993. cyclin-dependent kinase inhibitor genes, p16(INK4A) and p18, in
404. Liu YJ, Soumelis V, Watanabe N, et al: TSLP: an epithelial cell cyto- childhood T cell lineage acute lymphoblastic leukemias. Leukemia
kine that regulates T cell differentiation by conditioning dendritic cell 10(2):255–260, 1996.
maturation. Annu Rev Immunol 25:193–219, 2007. 430. Cayuela JM, Madani A, Sanhes L, et al: Multiple tumor-suppressor
405. Zenatti PP, Ribeiro D, Li W, et al: Oncogenic IL7R gain-of-function gene 1 inactivation is the most frequent genetic alteration in T-cell acute
mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet lymphoblastic leukemia. Blood 87(6):2180–2186, 1996.
43(10):932–939, 2011. 431. Takeuchi S, Bartram CR, Seriu T, et al: Analysis of a family of cyclin-
406. Shochat C, Tal N, Bandapalli OR, et al: Gain-of-function mutations in dependent kinase inhibitors: p15/MTS2/INK4B, p16/MTS1/INK4A,
interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic and p18 genes in acute lymphoblastic leukemia of childhood. Blood
leukemias. J Exp Med 208(5):901–908, 2011. 86(2):755–760, 1995.
407. Mansour MR, Reed C, Eisenberg AR, et al: Targeting oncogenic 432. Heyman M, Rasool O, Borgonovo Brandter L, et al: Prognostic impor-
interleukin-7 receptor signalling with N-acetylcysteine in T cell acute tance of p15INK4B and p16INK4 gene inactivation in childhood acute
lymphoblastic leukaemia. Br J Haematol 168(2):230–238, 2015. lymphocytic leukemia. J Clin Oncol 14(5):1512–1520, 1996.
408. Knudson AG, Jr: Mutation and cancer: statistical study of retinoblas- 433. Drexler HG: Review of alterations of the cyclin-dependent kinase
toma. Proc Natl Acad Sci USA 68(4):820–823, 1971. inhibitor INK4 family genes p15, p16, p18 and p19 in human
409. Junttila MR, Evan GI: p53–a Jack of all trades but master of none. Nat leukemia-lymphoma cells. Leukemia 12(6):845–859, 1998.
Rev Cancer 9(11):821–829, 2009. 434. Inuzuka H, Shaik S, Onoyama I, et al: SCF(FBW7) regulates cel-
410. Levine AJ: p53, the cellular gatekeeper for growth and division. Cell lular apoptosis by targeting MCL1 for ubiquitylation and destruction.
88(3):323–331, 1997. Nature 471(7336):104–109, 2011.
411. Lu WJ, Amatruda JF, Abrams JM: p53 ancestry: gazing through an 435. Mullighan CG, Goorha S, Radtke I, et al: Genome-wide analysis
evolutionary lens. Nat Rev Cancer 9(10):758–762, 2009. of genetic alterations in acute lymphoblastic leukaemia. Nature
412. Nigro JM, Baker SJ, Preisinger AC, et al: Mutations in the p53 gene 446(7137):758–764, 2007.
occur in diverse human tumour types. Nature 342(6250):705–708, 436. Shah S, Schrader KA, Waanders E, et al: A recurrent germline PAX5
1989. mutation confers susceptibility to pre-B cell acute lymphoblastic
413. Li FP, Fraumeni JF, Jr, Mulvihill JJ, et al: A cancer family syndrome in leukemia. Nat Genet 45(10):1226–1231, 2013.
twenty-four kindreds. Cancer Res 48(18):5358–5362, 1988. 437. Winandy S, Wu P, Georgopoulos K: A dominant mutation in the
414. Malkin D, Li FP, Strong LC, et al: Germ line p53 mutations in a Ikaros gene leads to rapid development of leukemia and lymphoma.
familial syndrome of breast cancer, sarcomas, and other neoplasms. Cell 83(2):289–299, 1995.
Science 250(4985):1233–1238, 1990. 438. Georgopoulos K, Bigby M, Wang JH, et al: The Ikaros gene is required
415. Srivastava S, Zou ZQ, Pirollo K, et al: Germ-line transmission of a for the development of all lymphoid lineages. Cell 79(1):143–156,
mutated p53 gene in a cancer-prone family with Li-Fraumeni syn- 1994.
drome. Nature 348(6303):747–749, 1990. 439. Harvey RC, Mullighan CG, Chen IM, et al: Rearrangement of CRLF2 is
416. Frebourg T, Friend SH: Cancer risks from germline p53 mutations. J associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/
Clin Invest 90(5):1637–1641, 1992. Latino ethnicity, and a poor outcome in pediatric B-progenitor acute
417. Hsiao MH, Yu AL, Yeargin J, et al: Nonhereditary p53 mutations in lymphoblastic leukemia. Blood 115(26):5312–5321, 2010.
T-cell acute lymphoblastic leukemia are associated with the relapse 440. van Noort M, Clevers H: TCF transcription factors, mediators of
phase. Blood 83(10):2922–2930, 1994. Wnt-signaling in development and cancer. Dev Biol 244(1):1–8,
418. Diccianni MB, Yu J, Hsiao M, et al: Clinical significance of p53 2002.
mutations in relapsed T-cell acute lymphoblastic leukemia. Blood 441. Yochum GS, Cleland R, Goodman RH: A genome-wide screen for
84(9):3105–3112, 1994. beta-catenin binding sites identifies a downstream enhancer element
419. Wada M, Bartram CR, Nakamura H, et al: Analysis of p53 mutations that controls c-Myc gene expression. Mol Cell Biol 28(24):7368–7379,
in a large series of lymphoid hematologic malignancies of childhood. 2008.
Blood 82(10):3163–3169, 1993. 442. He TC, Sparks AB, Rago C, et al: Identification of c-MYC as a target
420. Hebert J, Cayuela JM, Berkeley J, et al: Candidate tumor-suppressor of the APC pathway. Science 281(5382):1509–1512, 1998.
genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent 443. Brantjes H, Roose J, van De Wetering M, et al: All Tcf HMG box
homozygous deletions in primary cells from T- but not from B-cell transcription factors interact with Groucho-related co-repressors.
lineage acute lymphoblastic leukemias. Blood 84(12):4038–4044, Nucleic Acids Res 29(7):1410–1419, 2001.
1994. 444. Li L, Leid M, Rothenberg EV: An early T cell lineage commitment
421. Fizzotti M, Cimino G, Pisegna S, et al: Detection of homozygous checkpoint dependent on the transcription factor Bcl11b. Science
deletions of the cyclin-dependent kinase 4 inhibitor (p16) gene in 329(5987):89–93, 2010.
acute lymphoblastic leukemia and association with adverse prognostic 445. Wakabayashi Y, Watanabe H, Inoue J, et al: Bcl11b is required for
features. Blood 85(10):2685–2690, 1995. differentiation and survival of alphabeta T lymphocytes. Nat Immunol
422. Haidar MA, Cao XB, Manshouri T, et al: p16INK4A and p15INK4B 4(6):533–539, 2003.
gene deletions in primary leukemias. Blood 86(1):311–315, 1995. 446. Ikawa T, Hirose S, Masuda K, et al: An essential developmental check-
423. Mullighan CG, Miller CB, Radtke I, et al: BCR-ABL1 lympho- point for production of the T cell lineage. Science 329(5987):93–96,
blastic leukaemia is characterized by the deletion of Ikaros. Nature 2010.
453(7191):110–114, 2008. 447. Li P, Burke S, Wang J, et al: Reprogramming of T cells to natural
424. Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent killer-like cells upon Bcl11b deletion. Science 329(5987):85–89,
kinases. Genes Dev 9(10):1149–1163, 1995. 2010.

