Page 1171 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1171
Chapter 64 Pathobiology of Acute Lymphoblastic Leukemia 1019.e11
448. Gutierrez A, Kentsis A, Sanda T, et al: The BCL11B tumor suppres- 465. Holmfeldt L, Wei L, Diaz-Flores E, et al: The genomic landscape of
sor is mutated across the major molecular subtypes of T-cell acute hypodiploid acute lymphoblastic leukemia. Nat Genet 45(3):242–252,
lymphoblastic leukemia. Blood 118(15):4169–4173, 2011. 2013.
449. Kamimura K, Ohi H, Kubota T, et al: Haploinsufficiency of Bcl11b for 466. Heerema NA, Raimondi SC, Anderson JR, et al: Specific extra chromo-
suppression of lymphomagenesis and thymocyte development. Biochem somes occur in a modal number dependent pattern in pediatric acute
Biophys Res Commun 355(2):538–542, 2007. lymphoblastic leukemia. Genes Chromosomes Cancer 46(7):684–693,
450. Nagamachi A, Yamasaki N, Miyazaki K, et al: Haploinsufficiency and 2007.
acquired loss of Bcl11b and H2AX induces blast crisis of chronic 467. Rabin KR, Whitlock JA: Malignancy in children with trisomy 21.
myelogenous leukemia in a transgenic mouse model. Cancer Sci Oncologist 14(2):164–173, 2009.
100(7):1219–1226, 2009. 468. Strefford JC, van Delft FW, Robinson HM, et al: Complex genomic
451. Zha S, Bassing CH, Sanda T, et al: ATM-deficient thymic lymphoma alterations and gene expression in acute lymphoblastic leukemia with
is associated with aberrant tcrd rearrangement and gene amplification. intrachromosomal amplification of chromosome 21. Proc Natl Acad Sci
J Exp Med 207(7):1369–1380, 2010. USA 103(21):8167–8172, 2006.
452. Su XY, Della-Valle V, Andre-Schmutz I, et al: HOX11L2/TLX3 is tran- 469. Harewood L, Robinson H, Harris R, et al: Amplification of AML1 on
scriptionally activated through T-cell regulatory elements downstream of a duplicated chromosome 21 in acute lymphoblastic leukemia: a study
BCL11B as a result of the t(5;14)(q35;q32). Blood 108(13):4198–4201, of 20 cases. Leukemia 17(3):547–553, 2003.
2006. 470. Li Y, Schwab C, Ryan SL, et al: Constitutional and somatic rearrange-
453. Nagel S, Scherr M, Kel A, et al: Activation of TLX3 and NKX2-5 ment of chromosome 21 in acute lymphoblastic leukaemia. Nature
in t(5;14)(q35;q32) T-cell acute lymphoblastic leukemia by remote 508(7494):98–102, 2014.
3’-BCL11B enhancers and coregulation by PU.1 and HMGA1. Cancer 471. Stephens PJ, Greenman CD, Fu B, et al: Massive genomic rearrange-
Res 67(4):1461–1471, 2007. ment acquired in a single catastrophic event during cancer development.
454. Kadoch C, Hargreaves DC, Hodges C, et al: Proteomic and bioinfor- Cell 144(1):27–40, 2011.
matic analysis of mammalian SWI/SNF complexes identifies extensive 472. Crasta K, Ganem NJ, Dagher R, et al: DNA breaks and chromosome
roles in human malignancy. Nat Genet 45(6):592–601, 2013. pulverization from errors in mitosis. Nature 482(7383):53–58, 2012.
455. Van Vlierberghe P, Palomero T, Khiabanian H, et al: PHF6 mutations 473. Zhang CZ, Spektor A, Cornils H, et al: Chromothripsis from DNA
in T-cell acute lymphoblastic leukemia. Nat Genet 42(4):338–342, damage in micronuclei. Nature 522(7555):179–184, 2015.
2010. 474. Moorman AV, Robinson H, Schwab C, et al: Risk-directed treatment
456. Wang J, Leung JW, Gong Z, et al: PHF6 regulates cell cycle progression intensification significantly reduces the risk of relapse among children
by suppressing ribosomal RNA synthesis. J Biol Chem 288(5):3174– and adolescents with acute lymphoblastic leukemia and intrachromo-
3183, 2013. somal amplification of chromosome 21: a comparison of the MRC
457. De Keersmaecker K, Atak ZK, Li N, et al: Exome sequencing identifies ALL97/99 and UKALL2003 trials. J Clin Oncol 31(27):3389–3396,
mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell 2013.
acute lymphoblastic leukemia. Nat Genet 45(2):186–190, 2013. 475. Olson LE, Richtsmeier JT, Leszl J, et al: A chromosome 21 critical
458. Rao S, Lee SY, Gutierrez A, et al: Inactivation of ribosomal protein L22 region does not cause specific Down syndrome phenotypes. Science
promotes transformation by induction of the stemness factor, Lin28B. 306(5696):687–690, 2004.
Blood 120(18):3764–3773, 2012. 476. Lane AA, Chapuy B, Lin CY, et al: Triplication of a 21q22 region
459. Sutcliffe MJ, Shuster JJ, Sather HN, et al: High concordance from contributes to B cell transformation through HMGN1 overexpression
independent studies by the Children’s Cancer Group (CCG) and and loss of histone H3 Lys27 trimethylation. Nat Genet 46(6):618–623,
Pediatric Oncology Group (POG) associating favorable prognosis with 2014.
combined trisomies 4, 10, and 17 in children with NCI Standard-Risk 477. Davids MS, Letai A: Targeting the B-cell lymphoma/leukemia 2 family
B-precursor Acute Lymphoblastic Leukemia: a Children’s Oncology in cancer. J Clin Oncol 30(25):3127–3135, 2012.
Group (COG) initiative. Leukemia 19(5):734–740, 2005. 478. Ni Chonghaile T, Sarosiek KA, Vo TT, et al: Pretreatment mitochondrial
460. Trueworthy R, Shuster J, Look T, et al: Ploidy of lymphoblasts is the priming correlates with clinical response to cytotoxic chemotherapy.
strongest predictor of treatment outcome in B-progenitor cell acute Science 334(6059):1129–1133, 2011.
lymphoblastic leukemia of childhood: a Pediatric Oncology Group 479. Chonghaile TN, Roderick JE, Glenfield C, et al: Maturation stage of
study. J Clin Oncol 10(4):606–613, 1992. T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL
461. Raimondi SC, Pui CH, Hancock ML, et al: Heterogeneity of hyper- dependence and sensitivity to ABT-199. Cancer Discov 4(9):1074–1087,
diploid (51-67) childhood acute lymphoblastic leukemia. Leukemia 2014.
10(2):213–224, 1996. 480. Tzoneva G, Perez-Garcia A, Carpenter Z, et al: Activating mutations
462. Martinez-Climent JA: Molecular cytogenetics of childhood hemato- in the NT5C2 nucleotidase gene drive chemotherapy resistance in
logical malignancies. Leukemia 11(12):1999–2021, 1997. relapsed ALL. Nat Med 19(3):368–371, 2013.
463. Belkov VM, Krynetski EY, Schuetz JD, et al: Reduced folate carrier 481. Meyer JA, Wang J, Hogan LE, et al: Relapse-specific mutations in
expression in acute lymphoblastic leukemia: a mechanism for ploidy NT5C2 in childhood acute lymphoblastic leukemia. Nat Genet
but not lineage differences in methotrexate accumulation. Blood 45(3):290–294, 2013.
93(5):1643–1650, 1999. 482. Gutierrez A, Pan L, Groen RW, et al: Phenothiazines induce PP2A-
464. Heerema NA, Nachman JB, Sather HN, et al: Hypodiploidy with mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest
less than 45 chromosomes confers adverse risk in childhood acute 124(2):644–655, 2014.
lymphoblastic leukemia: a report from the children’s cancer group.
Blood 94(12):4036–4045, 1999.

