Page 92 - Clinical Immunology_ Principles and Practice ( PDFDrive )
P. 92
CHaPter 4 Antigen Receptor Genes, Gene Products, and Coreceptors 77
55. Dempsey PW, Allison ME, Akkaraju S, et al. C3d of complement as a 66. Gao GF, Rao Z, Bell JI. Molecular coordination of αβ T-cell receptors and
molecular adjuvant: bridging innate and acquired immunity. Science coreceptors CD8 and CD4 in their recognition of peptide-MHC ligands.
1996;271(5247):348–50. Trends Immunol 2002;23(8):408–13.
56. Bournazos S, Wang TT, Dahan R, et al. Signaling by antibodies: recent 67. Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn, in
progress. Annu Rev Immunol 2017;35:285–311. T-cell development and activation. Oncogene 2004;23(48):7990–8000.
57. Nimmerjahn F, Ravetch JV. Fcγ receptors: old friends and new family 68. Li Y, Yin Y, Mariuzza RA. Structural and biophysical insights into the role
members. Immunity 2006;24(1):19–28. of CD4 and CD8 in T cell activation. Front Immunol 2013;4:206.
58. Ono M, Okada H, Bolland S, et al. Deletion of SHIP or SHP-1 69. van der Merwe PA, Davis SJ. Molecular interactions mediating T cell
reveals two distinct pathways for inhibitory signaling. Cell antigen recognition. Ann Rev Immunol 2003;21:659–84.
1997;90(2):293–301. 70. Artyomov MN, Lis M, Devadas S, et al. CD4 and CD8 binding to MHC
59. Nitschke L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct molecules primarily acts to enhance Lck delivery. Proc Natl Acad Sci USA
functions. Immunol Rev 2009;230(1):128–43. 2010;107(39):16916–21.
60. Brazin KN, Mallis RJ, Das DK, et al. Structural features of the αβ TCR 71. Wang Z, Yang X, Chu X, et al. The structural basis for the oligomerization
mechanotransduction apparatus that promote PMHC discrimination. of the N-terminal domain of SATB1. Nucleic Acids Res
Front Immunol 2015;6:441. 2012;40(9):4193–202.
61. Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, 72. Chang HC, Tan K, Ouyang J, et al. Structural and mutational analyses of
and co-receptors. Ann Rev Immunol 2006;24:419–66. a CD8αβ heterodimer and comparison with the CD8αα homodimer.
62. Kuhns MS, Davis MM, Garcia KC. Deconstructing the form and function Immunity 2005;23(6):661–71.
of the TCR/CD3 complex. Immunity 2006;24(2):133–9. 73. Murakami N, Riella LV. Co-inhibitory pathways and their importance in
63. de Saint-Basile G, Geissmann F, Flori E, et al. Severe combined immune regulation. Transplantation 2014;98(1):3–14.
immunodeficiency caused by deficiency in either the δ or the ε subunit of 74. Baumeister SH, Freeman GJ, Dranoff G, et al. Coinhibitory pathways in
CD3. J Clin Invest 2004;114(10):1512–17. immunotherapy for cancer. Annu Rev Immunol 2016;34:539–73.
64. Roberts JL, Lauritsen JP, Cooney M, et al. T-B+NK+ severe combined 75. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a
immunodeficiency caused by complete deficiency of the CD3ζ subunit of common denominator approach to cancer therapy. Cancer Cell
the T-cell antigen receptor complex. Blood 2007;109(8):3198–206. 2015;27(4):450–61.
65. Recio MJ, Moreno-Pelayo MA, Kilic SS, et al. Differential biological role
of CD3 chains revealed by human immunodeficiencies. J Immunol
2007;178(4):2556–64.

