Page 142 - Engineering Mathematics Workbook_Final
P. 142

Complex Variables
                                                                                       →
            38.    The radius of convergence of                   42.    Define  : f C C  by
                          1     n 2                                            0, if Re z =  ( ) 0 or Im z =  (  ) 0
                                                                                  
                       1+                                            f  ( ) z = 
                                                                                  
                          n    − − − − −  z  is                                  , z         otherwise
                                              n
                   n= 0    n 3                                           . Then the set of points where  f  is

                   (a) e                 (b) 1/e                         analytic is

                   (c) 1                 (d)                            (a)  :Rez  ( ) 0z   and  Im ( )  0z 


                                    
                                                                              z
                                                                                    ( )  0
                                          n
            39.    It is given that   a z  converges at                 (b)  :Re z 
                                       n
                                   n= 0
                   z =  3 i +  4. Then the radius of                     (c)  :Re z   z  ( ) 0 or  Im z   ( )  0
                   convergence of the power series
                    
                     a z is                                             (d)  :Im z 
                                                                              z
                                                                                    ( )  0
                          n
                   n= 0  n
                                                                  43.    Let S be the positively oriented circle
                                             
                       
                   (a)  5                (b)  5
                                                                         given by  z −  3i =  2. Then the value
                   (c) <5                (d) > 5                                 dz
                                                                         of    2      is
                        f
            40.    Let  ( ) z  be an analytic function.                      s z +  4
                   Then the value of   2  f e it  ( )                  (a)   −              (b)  
                                           ( )cos t dt
                                       0                                      2                    2
                   equals                                                    − i                  i
                                                                         (c)                   (d)
                   (a) 0                 (b) 2  f  ( ) 0                     2                    2


                   (c) 2  f  1 ( ) 0    (d)   f  1 ( ) 0        44.    Let  ( ) cos z −     sin z   for non-
                                                                              f z =
                                                                                                z
                                                                                
                                     1                                   zero  z C  and  ( ) 0 = . Also, let
                                                                                                   0
                                                                                           f
                        f
            41.    Let  ( ) z =             . Then the
                                z −  2  3z +  2                          g z =                 
                                                                           ( ) sinh z  for  z C .
                                   1
                   coefficient of     in the Laurent
                                  z 3                                    (i) Then f(z) has a zero at z = 0 of
                                        f
                                                        2
                   series expansion of  ( ) z  for  z                   order
                   is                                                    (a) 0                 (b) 1
                   (a) 0                 (b) 1                           (c) 2                 (d) greater than 2

                   (c) 3                 (d) 5








                                                            140
   137   138   139   140   141   142   143   144   145   146   147