Page 140 - Engineering Mathematics Workbook_Final
P. 140

Complex Variables

                   (c) a 2n+ 1  =  0  for all n                   26.    In the Laurent series expansion of
                                                                                    1       1
                                        0
                            0
                   (d) a   but a =                                       f  ( ) z =  z −  1 −  z −  2   valid in the
                        0
                                    2
                                                                                                            1
                                                                                      2
            23.    Let I  I =   cot (  2 ) z  dz , where C is          region  z  , the coefficient of   z 2
                              c  (z i −  )                               is
                   the contour 4x +  2  y =  2  2 (counter
                                                                         (a) -1                (b) 0
                   clock-wise). Then I is equal to
                                                                         (c) 1                 (d) 2
                   (a) 0
                                                                  27.    Let  =   f  ( ) z  be the bilinear
                       −
                          
                   (b)  2 i
                                                                         transformation that maps -1, 0 and 1
                                      1                               to -i, 1 and i respectively. Then
                   (c) 2 i      2  −                               f  (1 i −  )  equals
                             sinh       

                                                                                +
                                                                             −
                            
                              2
                           2 i                                           (a)  1 2i             (b) 2i
                   (d) −
                                                                                                   −
                         sinh                                           (c)  2 i +            (d)  1 i
                                                                                                      +
                                                                             −
                              2
            24.    The real part of the principal value of        28.    For the positively oriented unit circle,
                      −
                   4 4 i   is                                                2Re  ( ) z
                                                                                     dz =
                   (a) 256 cos (ln 4)                                     z = 1 z + 2
                                                                                                  
                   (b) 64 cos (ln 4)                                     (a) 0                 (b)  i
                   (c) 16 cos (ln 4)                                     (c) 2 i              (d) 4 i 


                   (d) 4 cos (ln 4)                               29.    The number of zeroes, counting
                                                                         multiplicities, of the polynomial
                              
                                                                           5
                                                                                 3
                                                                                      2
            25.    If sin z =   a n (z −  /  ) 4  n  , then a          z +  3z +   z + 1 inside the circle
                                                        6
                             n= 0                                         z =  2 is
                   equals
                                              1                          (a) 0                 (b) 2
                   (a) 0                 (b)
                                             720                         (c) 3                 (d) 5

                          1                    − 1                30.     f =  u +  i  and  g  =  i +   be non-
                   (c)                   (d)
                       720 2                 720 2                       zero analytic functions on  z  1.

                                                                         Then it follows that

                                                                         (a)  ' 0f 




                                                            138
   135   136   137   138   139   140   141   142   143   144   145