Page 140 - Engineering Mathematics Workbook_Final
P. 140
Complex Variables
(c) a 2n+ 1 = 0 for all n 26. In the Laurent series expansion of
1 1
0
0
(d) a but a = f ( ) z = z − 1 − z − 2 valid in the
0
2
1
2
23. Let I I = cot ( 2 ) z dz , where C is region z , the coefficient of z 2
c (z i − ) is
the contour 4x + 2 y = 2 2 (counter
(a) -1 (b) 0
clock-wise). Then I is equal to
(c) 1 (d) 2
(a) 0
27. Let = f ( ) z be the bilinear
−
(b) 2 i
transformation that maps -1, 0 and 1
1 to -i, 1 and i respectively. Then
(c) 2 i 2 − f (1 i − ) equals
sinh
+
−
2
2 i (a) 1 2i (b) 2i
(d) −
−
sinh (c) 2 i + (d) 1 i
+
−
2
24. The real part of the principal value of 28. For the positively oriented unit circle,
−
4 4 i is 2Re ( ) z
dz =
(a) 256 cos (ln 4) z = 1 z + 2
(b) 64 cos (ln 4) (a) 0 (b) i
(c) 16 cos (ln 4) (c) 2 i (d) 4 i
(d) 4 cos (ln 4) 29. The number of zeroes, counting
multiplicities, of the polynomial
5
3
2
25. If sin z = a n (z − / ) 4 n , then a z + 3z + z + 1 inside the circle
6
n= 0 z = 2 is
equals
1 (a) 0 (b) 2
(a) 0 (b)
720 (c) 3 (d) 5
1 − 1 30. f = u + i and g = i + be non-
(c) (d)
720 2 720 2 zero analytic functions on z 1.
Then it follows that
(a) ' 0f
138

