Page 141 - Engineering Mathematics Workbook_Final
P. 141
Complex Variables
(b) f is conformal on z 1 (a) 0, i (b) 0, ,2 i i
(c) f kg for some real k (c) 0, i , 2 i (d) 0
(d) f is one to one 2
i
35. The value of exp (e − i ) d
1 0
31. The principal value of log i 4 is equals
(a) 2 i (b) 2
i
(a) i (b) (c) (d) i
2
36. The sum of the residues at all the
i i cot z
f
(c) (d) poles of ( ) z = 2 , where a is
+
4 8 (z a )
a constant, (a 0, 1, 2,...... ) is
32. Consider the functions
2
f ( ) z = x + 2 iy and 1 1
2
(a) − cosec a
+
2
2
g ( ) z = x + y + ixy . At z = 0, n=− (n a ) 2
(a) f is analytic but not g 1 1
2
(b) − 2 + cosec a
+
(b) g is analytic but not f n=− (n a )
(c) both f and g are analytic 1 1 2
(c) − − cosec a
n=− (n a ) 2
+
(d) neither f nor g is analytic
1 (d) 1 1 + cosec a
2
33. The coefficient of in the expansion ) 2
z n=− (n a+
z
of Log , valid in z 1, is 37. Which of the following is not the real
z − 1 part of an analytic function?
(a) -1 (b) 1 (a) x − y
2
2
1 1
(c) − (d) 1
2 2 (b)
1 x + 2 y 2
+
34. Let be a simple closed curve in the
(c) cos coshx y
complex. Then the set of all possible
values of dz is (d) x + x
2
z (1 z− 2 ) x + y 2
139

