Page 141 - Engineering Mathematics Workbook_Final
P. 141

Complex Variables

                                                                                
                   (b) f is conformal on  z  1                          (a) 0,    i        (b) 0, ,2 i  i   

                   (c)  f   kg  for some real k                         (c) 0,     i , 2    i   (d)   0


                   (d) f is one to one                                                 2
                                                                                                i
                                                                  35.    The value of    exp (e −  i  ) d
                                                 1                                    0
            31.    The principal value of log i       4        is   equals
                                                  
                                                                         (a) 2 i              (b) 2
                                             i
                   (a) i                (b)                             (c)                  (d) i
                                             2
                                                                  36.    The sum of the residues at all the
                                                                                               
                       i                    i                                             cot z
                                                                                   f
                   (c)                   (d)                             poles of  ( ) z =         2  , where a is
                                                                                              +
                        4                    8                                             (z a   )
                                                                                             
                                                                         a constant, (a   0, 1,   2,...... ) is
            32.    Consider the functions
                                   2
                    f  ( ) z =  x +  2  iy  and                              1        1
                                                                                                        
                                                                                                       2
                                                                         (a)                −   cosec a
                                                                                       +
                             2
                                  2
                   g ( ) z =  x +  y + ixy . At z = 0,                        n=− (n a  ) 2
                   (a) f is analytic but not g                                 1        1
                                                                                                          
                                                                                                         2
                                                                         (b) −             2  +    cosec a
                                                                                         +
                   (b) g is analytic but not f                                   n=− (n a  )
                   (c) both f and g are analytic                               1        1               2
                                                                                                          
                                                                         (c) −                −    cosec a
                                                                                n=− (n a  ) 2
                                                                                        +
                   (d) neither f nor g is analytic
                                                                                 
                                       1                                 (d)   1      1     +   cosec a
                                                                                                        
                                                                                                       2
            33.    The coefficient of     in the expansion                               ) 2
                                       z                                       n=− (n a+
                              z  
                   of  Log             , valid in  z  1, is    37.   Which of the following is not the real
                             z − 1                                     part of an analytic function?
                   (a) -1                (b) 1                           (a)  x −  y
                                                                                    2
                                                                              2
                         1                   1
                   (c) −                 (d)                                      1
                         2                   2                           (b)
                                                                             1 x +  2  y 2
                                                                               +
            34.    Let   be a simple closed curve in the
                                                                         (c) cos coshx   y
                   complex. Then the set of all possible

                   values of        dz      is                          (d)  x +    x
                                                                                   2
                                 z (1 z−  2 )                                   x +   y 2




                                                            139
   136   137   138   139   140   141   142   143   144   145   146