Page 145 - Engineering Mathematics Workbook_Final
P. 145

Complex Variables

                                                                       The residue of  ( ) z  at its pole is
                                                                                         f
                   (a) −     3           (b) −     3
                         6                     8                         equal to 1. Then the value of   is

                                             −
                   (c)    3             (d)     3                      (a) -1                (b) 1
                                                                         (c) 2                 (d) 3
                                              0
                                         :
            57.    The straight lines  L x = ,
                                       1
                   L 2  : y =  and  L x + :  y =  1 are           60.    For the value of   obtained in above
                            0
                                                                                                 g
                                                                         problem, the function  ( ) z  is not
                                    3
                   mapped by the transformation  =     z                conformal at a point
                                                         2
                   into the curves C , C  and C                               (1 3i  )             (3 i +  )
                                                                                  +
                                                  3
                                     1
                                         2
                   respectively. The angle of                            (a)     6             (b)    6
                   intersection between the curves at
                    =  0 is                                             (c)   2              (d)   i 
                                                                              3                    2
                                             
                   (a) 0                 (b)                      61.    The coefficient of (z    )  in the
                                                                                                    2
                                                                                               −
                                             4
                                                                         Taylor series expansion of
                                                                                   sin z
                                                                                                   
                   (c)                   (d)                                              if   z 
                                                                                  
                                                                                    z 
                       2                                                  f  ( ) z =  −                around
                                                                                  
                                                                                                   =
            58.    Let                                                             −    1  if  z 
                                           2                             is
                                                 
                         1     −  ( −  ) 2  +  4 dz =  4                1                     − 1
                                                 
                            (z −  ) 2  4  z                        (a)   2               (b)   2
                   , where the close curve C is the                          1                       1
                   triangle having vertices at                           (c)                   (d) −
                       − i i −     i i −                                 6                       6
                               ,
                    , i               , the integral                      f
                               
                      
                                        
                             
                         2       2                            62.    Let  ( ) z  be an entire function on C
                   being taken in anti-clockwise                         such that  ( ) z  100log z  for each
                                                                                    f
                   direction. Then one value of   is
                                                                                            f i =
                                                                                     2
                                                                         z with  z  . If  ( ) 2i , then f(1)
                   (a) 1 i+              (b) 2 i+                        must be
                   (c) 3 i+              (d) 4 i+                        (a) 2
            59.    Consider the functions                                (b) 2i

                            z +   z                                     (c) i
                             2
                    f  ( ) z =     2  ,
                            (z +  ) 1                                    (d) cannot be determined

                                        
                   g ( ) sinhz =      z −         ,    0.
                                     2  




                                                            143
   140   141   142   143   144   145   146   147   148   149   150