Page 148 - Engineering Mathematics Workbook_Final
P. 148

Complex Variables

                   (a) 2                 (b) 5                           the greatest integer less than or equal
                                                                         to    is
                   (c) 2 + 5i            (d) 5 + 2i

                                                                                   →
            81.    Let  be the circle given by  z =  4e i       85.    Let  : f C C  be non-zero and
                   , where   varies from 0 to 2 . Then                 analytic at all points in Z. If
                                                                            ( ) z =
                                                                                  
                                                                                      ( )cot 
                                                                                    f z
                                                                         F
                                                                                             ( ) z  for
                           e
                         z − z 2z  dz =                                z C    / Z , then the residue of F at
                                                                           
                         2
                                                                           
                                                                         n Z  is
                                                      )
                           (
                                                  −
                        
                                              i 
                                                     2
                             2
                   (a) 2 i e −    ) 1    (b)  (1 e
                                                                                 ( )
                                                                             
                                                                                                   f
                                                                         (a)  f n              (b)  ( ) n
                            2
                       
                                                   −
                   (c)  ( i e −  ) 1     (d) 2 i  (1 e 2 )                   f  ( ) n
                                                                                                     ' f
                                                                         (c)                  (d)  ( ) z  z n
                                                                                                          =
                                    2
                                            
                                 3 z
                        f
            82.    Let  ( ) z =  z e  for  z C  and let
                                         i
                                      =
                    be the circle  z e , where                  86.    Which of the following is the
                   varies from 0 to 4 . Then                            imaginary part of the possible value
                                                                                 i
                     1        f  1 ( ) z                               of ln ( )
                    2 i      f  ( ) z  dz
                                                                         (a)                  (b)  
                             →
            83.    Let  : f C C (the set of all complex                                            2
                   numbers) be defined by                                                         
                           )
                                        2
                                3
                                               3
                    f  ( , x y =  x + 3xy +  ( i y + 3x 2  ) y .         (c)   4               (d)   8
                          ' f
                   Let  ( ) z  denote the derivative of f
                                                                            f z =
                                                                                       +
                                                                  87.    If  ( ) 11 iv  is analytic then, the
                   with respect to z. Then which one of
                   the following statements is TRUE?                     harmonic conjugate of
                                                                         u =  x −  y +  xy  is
                                                                                    2
                                                                               2
                   (a)  ( ' 1f  +  ) i  exist and                             2     2
                    f  ( ' 1 i+  ) =  3 5                                (a)  x −  y −  xy
                                                                         (b)  x +  2  y −  2  xy
                   (b) f is analytic at the origin
                   (c) f is not differentiable at I                      (c) 2xy +  1 ( y −  2  x 2 )
                                                                                    2
                   (d) f is differentiable at 1
                                                                             xy  +  ( 2 y −  2  x 2 )
                                                                         (d)

                                      
                                      i z
            84.    Let  =    C   2z −  2  e 5z +  2  dz ,                   2
                            +
                   C  :cost i  sint , 0 t    2 . Then

                                                            146
   143   144   145   146   147   148   149   150   151   152   153