Page 147 - Engineering Mathematics Workbook_Final
P. 147
Complex Variables
n
70. Let a z be the Laurent series (d) Both f and g are analytic
n=−
n
1 n
expansion of ( ) z = 76. If a (z − ) 2 is the Laurent
f
2z − 2 13z + 15 − n
3 a series of the function
in the annulus z 5. Then 1 z + 4 z + 3 z 2
2 a f ( ) z = for z C / 2 .
2 (z − ) 2 3
is equal to
Then a equals.
−
2
i dz
71. The value of dz =
−
4 z = 4 z cos z 77. For n Z define
1 ( i n i− )x
72. Let C = z C : z = 2 . Then c = 2 − e dx , then
n
1 z 7 cos 1 c 2 .
2 i C z 2 dz n Z n
73. Let (a) cosh (b) sinh
)
3
2
+
2
3
u ( , x y = x + ax y bxy + 2y be (c) cosh 2 (d) sinh 2
)
a harmonic function and ( , x y its ( 2 / i )
−
−
harmonic conjugate. If (0,0 ) 1= , 78. The principal value of ( ) 1 is
+
+
then a b ( ) (a) e (b) e
1,1
2i
2
−
74. Let C be a simple positively oriented (c) e − 2i (d) e
2
circle of radius 2 centered at origin in
the complex plane. Then 79. In the Laurent series expansion of
1
2 C ze + 1/z tan + z 1 dz f ( ) z = valid for z − 1 1,
i 2 (z − 1 )(z − ) 3 2 ( z z − ) 1
1
the coefficient of is
z − 1
f z
75. Let ( ) ( x= 2 + y 2 ) 2ixy+ and (a) -2 (b) -1
2
g ( ) 2z = xy + ( i x − y 2 ) for z C . (c) 0 (d) 1
Then in the complex plane C
80. Let :f C C→ be an entire function
(a) f is analytic but g is not analytic with f(0) = 1, f(1) = 2 and f’(0) = 0. If
there exists M > 0 such that
(b) g is analytic but f is not analytic
f 11 ( ) z M for all z C , then f(2)
(c) neither f nor g is analytic
=
145

