Page 147 - Engineering Mathematics Workbook_Final
P. 147

Complex Variables

                                  n
            70.    Let      a z  be the Laurent series                 (d) Both f and g are analytic
                          n=−
                               n
                                                 1                                        n
                   expansion of  ( ) z =                          76.    If    a  (z −   ) 2  is the Laurent
                                  f
                                          2z −  2  13z +  15                  −  n
                                   3                  a                  series of the function
                   in the annulus      z   5. Then   1                          z +  4  z +  3  z 2
                                   2                  a                   f  ( ) z =            for  z C  /   2 .
                                                       2                            (z −   ) 2  3
                   is equal to
                                                                         Then a  equals.
                                                                                 −
                                                                                  2
                                    i          dz
            71.    The value of                     dz =
                                                                                
                                   −
                                 4       z = 4  z cos z          77.    For n Z  define
                                                                                1         ( i n i−  )x
            72.    Let C =  z  C  : z =   2 . Then                    c =    2    −    e  dx , then
                                                                          n
                     1     z 7  cos     1                              c  2  .
                    2 i   C          z 2        dz                n Z  n
                                                                          

            73.    Let                                                   (a) cosh             (b) sinh 
                          )
                               3
                                      2
                                         +
                                               2
                                                      3
                   u ( , x y =  x +  ax y bxy +    2y  be                (c) cosh 2           (d) sinh 2
                                                    )
                                             
                   a harmonic function and  ( , x y  its                                              ( 2 / i  )
                                                                                                      −
                                                                                                  −
                   harmonic conjugate. If  (0,0  ) 1= ,          78.    The principal value of ( ) 1       is
                           +
                               +
                   then  a b      ( )                                   (a) e                 (b) e
                                    1,1
                                                                                                    2i
                                                                              2
                                                                                                    −
            74.    Let C be a simple positively oriented                 (c) e − 2i            (d) e
                                                                                                     2
                   circle of radius 2 centered at origin in
                   the complex plane. Then                        79.    In the Laurent series expansion of
                                                                                    1
                                                                                                            
                    2    C       ze +  1/z  tan +  z  1      dz      f  ( ) z =        valid for  z −  1 1,
                     i              2    (z −  1 )(z −  ) 3  2                 ( z z −  ) 1
                                                                                            1
                                                                         the coefficient of       is
                                                                                            z − 1
                        f z
            75.    Let  ( ) ( x=   2  +  y 2 ) 2ixy+   and               (a) -2                (b) -1
                                      2
                   g ( ) 2z =  xy +  ( i x −  y 2 )  for  z C .         (c) 0                 (d) 1
                   Then in the complex plane C
                                                                  80.    Let  :f C C→  be an entire function
                   (a) f is analytic but g is not analytic               with f(0) = 1, f(1) = 2 and f’(0) = 0. If

                                                                         there exists M > 0 such that
                   (b) g is analytic but f is not analytic
                                                                          f  11 ( ) z   M  for all  z C , then f(2)
                   (c) neither f nor g is analytic
                                                                         =





                                                            145
   142   143   144   145   146   147   148   149   150   151   152