Page 149 - Engineering Mathematics Workbook_Final
P. 149

Complex Variables

                                                                                  −
                                                                                      −
                                          f
            88.    An analytic function  ( ) z  is such                  (d)  1,1 2 ,1 2 −    2
                                     =
                                 z
                        Re
                   that  ( f  1 ( )) 2y  and
                                                                                        4
                                                                                             2
                                                                                                      2 0
                                                                  93.    The roots of  z −  z −  2z + =  are
                    f  (1 i+  ) 2=   then imaginary part of
                                                                             
                                                                         (a)  1
                    f  ( ) z =
                                                                         (b)  1 i−  
                                                    2
                                              2
                   (a)  2xy−             (b)  x −  y
                                                                         (c) both (a) & (b)
                                              2
                                                    2
                   (c) 2xy               (d)  y −  x                     (d) neither (a) nor (b)
                                           2
                                  f
            89.    The function  ( ) z =  z  maps first           94.    Consider the functions
                   quadrant onto ___                                      f  ( ) z =  x +  2  iy  and
                                                                                         2
                   (a) itself            (b) upper half
                   plane  (c) third quadrant    (d) right                g ( ) z =  x +  2  ixy  at z = 0
                   half plane

                                     )
                                 −
            90.    Let u =  2x (1 y  for real x and y                    (a) f is analytic, but not g
                                          )
                                    v
                   then a function  ( , x y  so that
                                                                         (b) g is analytic but not f
                              +
                    f  ( ) z =  u iv is analytic

                                   2
                                                         2
                   (a)  x −  2  ( y −  ) 1    (b) ( x −  ) 1 +  2  y       (c) both f and g are analytic
                                                         2
                                   2
                   (c) ( x −  ) 1 −  2  y    (d)  x +  2  ( y −  ) 1       (d) neither f nor g is analytic

                                          − −
            91.    If  z −  1 =  2 , then  zz z z =                          z
                                                                  95.    Lt    is
                                                                         z→ 0  z
                   (a) 1                 (b) 2

                                                                         (a) 0
                   (c) 3                 (d) 4
                                                                         (b) 1
                              2
            92.    If 1,  ,   are cube roots of units,
                                            3
                   then the roots of (x −  ) 1 + =  are                  (c)   1
                                                8 0
                                                                             2
                   (a)  1, 1, 1−  −  −
                                                                         (d) does not exists

                   (b) 1, ,2  


                   (c)  1 1 2 ,1 2− + +   +  2





                                                            147
   144   145   146   147   148   149   150   151   152   153   154