Page 38 - Engineering Mathematics Workbook_Final
P. 38

Calculus

                         f      f                                                  1 ln x 
                                                                                      +
                   (b)      and     exist but not equal                  (c) lncot               +  c
                        x       y                                                    2   
                                                                                       ln x 
                        f             f                                (d) lnsin 1+             +  c
                   (c)     exists but     does not                                      2  
                        x            y
                         f            f                                                       [JAM CA 2005]
                   (d)      exists but    does not
                        y            x                                                  1
                                                                  205.   The value of   1   e  e (1 ln x+  ) dx  is
                                          [JAM CA 2006]                                   x 2

                                       x           y                 (a) 1                 (b) 1/e

            202.   Suppose  z =  x sin             +  y sin           ,      (c) e        (d) 0
                                       y           x 
                                     z      z                   206.   If a real valued function f is given by
                   xy   0 . Then  x   +  y     is equal to                  f  ( ) t
                                     x      y                           x      dt =  2 x b x   where a
                                                                                            +
                                                                                                ,
                                                                                                     0
                                                                          a t  2
                   (a) -z                (b) 0                           > 0 and b are areal constants, then f(4) is
                   (c) z                 (d) 2z                          equal to

                                 =
                                              =
            203.   If  z =  e xy 3 ,  x t cost ,  y t sint  then         (a) 4                 (b) 6
                                                                         (c) 8                 (d) 10
                    dz   at t =    is
                    dt        2                                                                 [JAM CA 2010]


                                                                                              2
                                                                                              t −
                                                                                        cos x
                                                                              f
                   (a)  3  / 8          (b)  3  / 4             207.   Let  ( ) x =   sin x  e dt , then
                                            −
                   (c)  3  / 2          (d)   3  / 8                      ( ' f  /  ) 4  equals
                                          [JAM CA 2009]
                                                                         (a)  1/ e             (b) −  2 / e
                                           dx                           (c)  2 / e            (d) −  1/ e
            204.   The value of
                                                 +
                                        −
                                   x  1 cos  2 (1 ln x  )
                                                                                                [JAM MA 2006]
                   is
                                                                  208.   Let  :f R R→  be a continuous function.
                               1 ln x 
                                +
                   (a) ln tan               +  c                        0   x  f  ( )dt =  x  sin ( ) x
                                                                                  2t
                                 2                                     If                            for all
                               1 ln x                                    
                                −
                   (b) ln tan               + c                    x R , then f(2) is equal to
                                 2    
                                                                         (a) -1                (b) 0
                                                                         (c) 1                 (d) 2

                                                                                                [JAM MA 2007]




                                                             36
   33   34   35   36   37   38   39   40   41   42   43