Page 38 - Engineering Mathematics Workbook_Final
P. 38
Calculus
f f 1 ln x
+
(b) and exist but not equal (c) lncot + c
x y 2
ln x
f f (d) lnsin 1+ + c
(c) exists but does not 2
x y
f f [JAM CA 2005]
(d) exists but does not
y x 1
205. The value of 1 e e (1 ln x+ ) dx is
[JAM CA 2006] x 2
x y (a) 1 (b) 1/e
202. Suppose z = x sin + y sin , (c) e (d) 0
y x
z z 206. If a real valued function f is given by
xy 0 . Then x + y is equal to f ( ) t
x y x dt = 2 x b x where a
+
,
0
a t 2
(a) -z (b) 0 > 0 and b are areal constants, then f(4) is
(c) z (d) 2z equal to
=
=
203. If z = e xy 3 , x t cost , y t sint then (a) 4 (b) 6
(c) 8 (d) 10
dz at t = is
dt 2 [JAM CA 2010]
2
t −
cos x
f
(a) 3 / 8 (b) 3 / 4 207. Let ( ) x = sin x e dt , then
−
(c) 3 / 2 (d) 3 / 8 ( ' f / ) 4 equals
[JAM CA 2009]
(a) 1/ e (b) − 2 / e
dx (c) 2 / e (d) − 1/ e
204. The value of
+
−
x 1 cos 2 (1 ln x )
[JAM MA 2006]
is
208. Let :f R R→ be a continuous function.
1 ln x
+
(a) ln tan + c 0 x f ( )dt = x sin ( ) x
2t
2 If for all
1 ln x
−
(b) ln tan + c x R , then f(2) is equal to
2
(a) -1 (b) 0
(c) 1 (d) 2
[JAM MA 2007]
36

