Page 100 - Engineering Mathematics Workbook_Final
P. 100

Differential Equations & Partial Differential Equations

                       2
                      d y                                         93.    An integrating factor of
            89.    If     +  y =  0 under the conditions
                      dt 2                                                 dy  +                2x
                          dy                                             x       (3x +  ) 1 y =  xe  is ________
                    y = 1,   =  0, when t =  then y is                     dx
                                            0
                          dt
                   equal to                                              (a)  xe               (b) 3xe
                                                                                                       x
                                                                               3x
                   (a) sin t             (b) cos t
                                                                                x
                                                                                                    3 x
                                                                         (c)  xe               (d)  x e
                   (c) tan t             (d) cot t
                                        [ESE 2018 (EE)]                                            [JAM 2005]

            90.    The solution (up to three decimal              94.    The general solution of         −
                                                                                                   2 11
                   place) at x = 1 of the differential                   5     + 9   = 0 is __________
                                                                             1
                               2
                             d y     dy
                   equation      + 2    +  y + 0 subject to                              3x
                             dx 2    dx                                  (a) (c +  c 2  ) x e
                                                                               1
                   boundary conditions  ( ) 0 = 1 and
                                          y
                                                                                            3
                                                                         (b) (c +  c  ln  ) x x
                    dy  ( ) 0 =  −  1 is ___________.                          1    2
                    dx
                                                                                         3
                                                                         (c) (c +  c 2  ) x x
                                                                               1
                  [GATE-2018 (CE-Morning Session)]
                                                                                          3
                                                                                           
            91.    Given the ordinary differential                       (d) (   +      )            [JAM 2005]
                                                                                    2
                                                                               1
                   equation
                                                                           2
                                                                          d y                    x )
                                                                                             +
                                                                                                     y
                                                                                                             1
                     2
                    d y   dy                                      95.        2  −  y =  x (sin x e ,  ( ) 0 = ,
                        +    − 6y =                                       dx
                                   0
                    dx 2  dx
                                                                          y 1 ( ) 0 = 1               [JAM 2005]
                                       dy
                   with  ( ) 0 =  and     ( ) 0 = , the
                                               1
                                0
                         y
                                       dx                         96.    Solve
                   value of y(1) is _____________                        (2 sin x +  y  3y 4 sin cos  ) x dx −
                                                                                             x
                   (Correct to two decimal places).
                                                                         (4y 3 cos x +  2  cos  ) x dy =  0 .
                [GATE-2018 (ME-Afternoon Session)]
            92.    The position of a particle y(t) is                                              [JAM 2005]
                   described by the differential equation:                  (c +  c  ln  ) x
                                                                  97.    If   1    2       is the general
                     2
                    d y     dy  5y                                                x
                        = −    −    .
                    dt 2    dt   4                                       solution of the differential equation
                                                                              2
                                                                            d y        dy
                                                                           2
                                                                                                        0
                   The initial conditions are  ( ) 0 = 1                 x       +  kx    +  y =  0,  x   then
                                              y
                                                                             dx 2      dx
                        dy                                               k equals ______
                   and        = 0 . The position (accurate
                        dt  t= 0
                   to two decimal places) of the particle                                          [JAM 2006]
                   at t =  is _________.
                                 [GATE-2018 (EC)]

                                                             98
   95   96   97   98   99   100   101   102   103   104   105