Page 259 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 259
PT3.1 MOTIVACIÓN 235
En la parte dos, usted observó cómo sistemas de un solo componente dan por re-
sultado una sola ecuación que puede resolverse mediante técnicas de localización de
raíces. Los sistemas con multicomponentes resultan en un sistema de ecuaciones mate-
máticas que deben resolverse de manera simultánea. Las ecuaciones están relacionadas,
ya que las distintas partes del sistema están influenciadas por otras partes. Por ejemplo,
en la figura PT3.1a, el reactor 4 recibe sustancias químicas de los reactores 2 y 3. En
consecuencia, su respuesta depende de la cantidad de sustancias químicas en esos reac-
tores.
Cuando esas dependencias se expresan matemáticamente, las ecuaciones resultantes
a menudo son de forma algebraica y lineal, como la ecuación (PT3.1). Las x son medidas
de las magnitudes de las respuestas de los componentes individuales. Al usar la figura
podría cuantificar la cantidad de masa en el primer reactor, x
PT3.1a como ejemplo, x 1 2
cuantificaría la cantidad en el segundo, y así sucesivamente. Las a representan común-
mente las propiedades y características relacionadas con las interacciones entre los
componentes. Por ejemplo, las a en la figura PT3.1a reflejarían las velocidades de masa
entre los reactores. Por último, las b representan las funciones forzadas que actúan sobre
el sistema, como la velocidad de alimentación en la figura PT3.1a. Las aplicaciones en el
capítulo 12 proporcionan otros ejemplos de tales ecuaciones obtenidas de la práctica de
la ingeniería.
Problemas de multicomponentes de los tipos anteriores surgen tanto de modelos
matemáticos de variables agrupadas (macro) como distribuidas (micro) (figura PT3.1).
Los problemas de variables agrupadas involucran componentes finitos relacionadas.
Entre los ejemplos se encuentran armaduras (sección 12.2), reactores (figura PT3.1a y
sección 12.1) y circuitos eléctricos (sección 12.3). Estos tipos de problemas utilizan
modelos que ofrecen poco o ningún detalle espacial.
En cambio, los problemas con variables distribuidas intentan describir detalles es-
paciales de los sistemas sobre una base continua o semicontinua. La distribución de
sustancias químicas a lo largo de un reactor tabular alargado (figura PT3.1b) es un
ejemplo de un modelo de variable continua. Las ecuaciones diferenciales obtenidas a
partir de las leyes de conservación especifican la distribución de la variable dependien-
te para tales sistemas. Esas ecuaciones diferenciales pueden resolverse numéricamente
al convertirlas en un sistema equivalente de ecuaciones algebraicas simultáneas. La
solución de tales sistemas de ecuaciones representa una importante área de aplicación a
la ingeniería de los métodos en los siguientes capítulos. Esas ecuaciones están relacio-
nadas, ya que las variables en una posición son dependientes de las variables en regiones
adyacentes. Por ejemplo, la concentración en la mitad del reactor es una función de la
concentración en regiones adyacentes. Ejemplos similares podrían desarrollarse para
la distribución espacial de la temperatura o del momentum. Más adelante, abordaremos
tales problemas cuando analicemos ecuaciones diferenciales.
Además de sistemas físicos, las ecuaciones algebraicas lineales simultáneas surgen
también en diferentes contextos de problemas matemáticos. Éstos resultan cuando se
requiere de funciones matemáticas que satisfagan varias condiciones en forma simultá-
nea. Cada condición resulta en una ecuación que contiene coeficientes conocidos y va-
riables desconocidas. Las técnicas analizadas en esta parte sirven para encontrar las
incógnitas cuando las ecuaciones son lineales y algebraicas. Algunas técnicas numéricas
de uso general que emplean ecuaciones simultáneas son el análisis de regresión (capítu-
lo 17) y la interpolación por trazadores (splines) (capítulo 18).
6/12/06 13:52:29
Chapra-09.indd 235 6/12/06 13:52:29
Chapra-09.indd 235

