Page 377 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 377
OPTIMIZACIÓN
PT4.1 MOTIVACIÓN
La localización de raíces (parte dos) y la optimización están relacionadas, en el sentido
de que ambas involucran valores iniciales y la búsqueda de un punto en una función. La
diferencia fundamental entre ambos tipos de problemas se ilustra en la figura PT4.1.
La localización de raíces es la búsqueda de los ceros de una función o funciones. En
cambio, la optimización es la búsqueda ya sea del mínimo o del máximo.
El óptimo es el punto donde la curva es plana. En términos matemáticos, esto co-
rresponde al valor de x donde la derivada ƒ′(x) es igual a cero. Además, la segunda de-
rivada, ƒ″(x), indica si el óptimo es un mínimo o un máximo: si ƒ″(x) < 0, el punto es
un máximo; si ƒ″(x) > 0, el punto es un mínimo.
Si comprendemos ahora la relación entre las raíces y el óptimo, es posible sugerir
una estrategia para determinar este último; es decir, se puede derivar a la función y lo-
calizar la raíz (el cero) de la nueva función. De hecho, algunos métodos de optimización
tratan de encontrar un óptimo resolviendo el problema de encontrar la raíz: ƒ′(x) = 0.
Deberá observarse que tales búsquedas con frecuencia se complican porque ƒ′(x) no se
puede obtener analíticamente. Por lo tanto, es necesario usar aproximaciones por dife-
rencia finita para estimar la derivada.
Más allá de ver la optimización como un problema de raíces, deberá observarse que
la tarea de localizar el óptimo está reforzada por una estructura matemática extra que no
es parte del encontrar una raíz simple. Esto tiende a hacer de la optimización una tarea
más fácil de realizar, en particular con casos multidimensionales.
PT4.1.1 Métodos sin computadora e historia
Como se mencionó antes, los métodos de cálculo diferencial aún se utilizan para deter-
minar soluciones óptimas. Todos los estudiantes de ciencias e ingeniería recuerdan haber
resuelto problemas de máximos y mínimos mediante la determinación de las primeras
FIGURA PT4.1
Una función de una sola variable ilustra la diferencia entre las raíces y el óptimo.
f(x)=0
f(x) Máximo
f(x) 0
f(x)=0
Raíz
0
Raíz Raíz x
f(x)=0
Mínimo f(x) 0
6/12/06 13:55:03
Chapra-13.indd 353
Chapra-13.indd 353 6/12/06 13:55:03

