Page 143 - APPLIED PROCESS DESIGN FOR CHEMICAL AND PETROCHEMICAL PLANTS, Volume 1, 3rd Edition
P. 143

Fluid  Flow                                          127

              or                                                      WmAljl/G =  19,494  (1.017)  (4.86)/58,482  =  1.641


                     (qdM.65  )2  LS"  TZ[  r,   J  .                 G/1c  =  58,482/1.017 =  57,500
              LiP=              '_b_                   (2-122)
                TP    20  000 d  5  p   E  2
                         �      avg                                     Reading Figure 2-40 type flow  pattern is probably
                                                                     annular,  but could be wave or dispersed, depending
              where E  =  l/i:)lcn                                   on many undefined and unknown conditions.

              (b)  For the Panhandle equation, Baker [33]  summarizes:   2.  Liquid Pressure drop


                                                                                                             (2-124)
                            [ � 11.07881  [     ;  0.5'.l94
              q   .  =  0.43587        �   - p  2  2
               dJ<J.fo        P          ZTL
                               s             m                        Determine R.,  for 3-in.  pipe:
                                                                      From Figure 2-11; £/d =  0.0006 for steel  pipe
                     [ ;: ',:;� l  (E)                 (2  123)
                                                                      v  =     lOOO      =  0.086 ft I  sec
              where E  (Panhandle)  =  0.9/<Jlcrr1.o 77                  63  (3600)  (0.0513)
                                                                      u, =  l  cp/1488  =  0.000672 lbs/ft sec
           Example 2-16: Two-phase Flow                               D  =  3.068/12  = 0.2557 ft
                                                                      p  =  63.0
             A  liquid-vapor mixture  is  to  flow  in  a  line  having  358   R 0  =  D vp/µe =  0.2557  (0.086)  (63.0)/0.000672
           feet of level  pipe  and  three vertical  rises  of 10 feet each   R,,  =  2060  (this is borderline, and in critical  region)
           plus  one vertical  rise of 50 feet.  Evaluate  the  type  of flow
           and expected pressure drop.                                Reading Figure 2-3,  approximate  f =  0.0576
             Vapor  =  3,000 lbs/hr                                   Substituting:
              Liquid  =  1,000 lbs/hr
              Density:  lbs/cu ft;  Vapor  =  0.077                  @L  = 3.36  (10- 6)  (0.0576)  (1000)2  (1  foot)/(3.068) (63)
                                                                                                              5
                             Liquid  =  63.0                             =  l.l  (10- 5)  psi/foot
             Viscosity,  centipoise; Vapor  =  0.00127
                               Liquid  =  1.0                         Gas  pressure drop
              Surface tension liquid  =  15 dynes/  cm
           Pipe to be schedule 40, steel                             v  =       3 000       =  211 ft/  sec
              Use maximum allowable vapor velocity= 15,000 ft/min.       0.077  (3600)  (0.0513)

                                                                      u, =  0.00127/1488 =  0.000000854 Ibs/ft sec
              1. Determine probable types of flow:
                                                                      R,  =  Dv p/µe  = 0.2557  (211)  (0.077)/0.000000854
                                                         r;·
                                                77x63                   = 4,900,000
                'A=  [(o  /0.075)(0  /62.3)Jf15  =   .o)  �  o
                              I
                                             0.0
                     '  g       L          [(o.o75  62.3  �
                1c  =  l.017                                         Reading Figure 2-3, f =  (l.0175
                                                                                  6
                                                                                                            5
                                           (  � !11.0( � !: �   r]  1/3   LiPc =  3.36  (10- )(0.0175)(1  foot)(3000)2/(3.068) (0.077)
                                                                         =  0.0254 psi/foot
                                        3
                1j1  =  (73/y)[µ L  (62.3/pL )2  ]11 =
                                                                                             5
                                                                                                        2
                \JI= 4.86                                          3. X =  (LiPdLiPg) 1 1 2  =  (l.l  (10- )/2.54  x  10- )11 2
                                                                       =  2.10  (10- 2)
                  Try  3-in.  pipe,  3.068-in.  l.D.,  cross-section area  =
                0.0513 sq.  ft.                                    4.  For annular flow:
                Wm= 1,000/0.0513 =  19,494 lbs/hr (sq ft)            <[>GTI  =  (  4.8  - 0.3 l 25d)  X0.343 - 0.02ld
                                                                          =  [4.8 - 0.3125  (3.068) l (2.10 x  10··2)0.343 - 0021  (3.068)
                G  = 3,000/0.0513  =  58,482 lbs/hr (sq ft)               =  1.31
   138   139   140   141   142   143   144   145   146   147   148