Page 113 - Elementary Algebra Exercise Book I
P. 113

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities



               3.75      Given  f(x) = ax + bx , and  1 ≤ f(−1) ≤ 3, 2 ≤ f(1) ≤ 4, find the range of
                                              2
                f(−3).


               Solution:  f(−1) = a − b, f(1) = a + b, f(−3) =9a − 3b .  Let  f(−3) = mf(−1) + nf(1)

               where m, n  are parameters ready to be determined. 9a − 3b = m(a − b)+ n(a + b) =(m + n)a − (m − n)b


 9a − 3b = m(a − b)+ n(a + b) =(m + n)a − (m − n)b . Comparing the coefficients to obtain   m + n =9  ⇒ m =6,n =3. Thus
                                                                         m − n =3
                f(−3) = 6f(−1) + 3f(1) . Since 1 ≤ f(−1) ≤ 3, 2 ≤ f(1) ≤ 4 , we have 12 ≤ 6f(−1) + 3f(1) ≤ 30

 12 ≤ 6f(−1) + 3f(1) ≤ 30, then  12 ≤ f(−3) ≤ 30. Therefore the range of  f(−3) is  [12, 30].

                                                        π
               3.76      Given  0 <b< 1, 0 <a < , and  x = (sin α)         log sin α ,y = (cos α) log cos α ,z = (sin α) log cos α
                                                                                                                   b
                                                                                                b
                                                                             b
                                                        4
 x = (sin α) log sin α ,y = (cos α) log cos α ,z = (sin α) log cos α  , determine the order of  x,y,z .
 b
                        b
     b
                                                                                         π
               Solution:  0 <b< 1, thus  f(x) = log x  is a decreasing function.  0 <a < , thus
                                                    b
                                                                                         4
               0 < sin α< cos α< 10 < sin α< cos α< 1. Therefore, log sin α> log cos α> 0, then

                                                                 b
                                                     b
               (sin α) log sin α  < (sin α) log cos α   ,
                                         b
                        b
               i.e. x< z . And (sin α) log cos α  < (cos α) log cos α , i.e. z <y . Hence,
                                                         b
                                        b
               we obtain the order x <z <y .
               3.77     Consider a triangle with side lengths a, b, c , and its area is 1/4, the radius of
                                            √     √     √
                                                                        1
               its circumcircle is  1. If  s =  a +  b +  c, t =  1  +  1  + . Compare  s  and  t .
                                                                a   b   c
               Solution: Let C  be the angle whose opposite side length is c , and the radius of circumcircle
                                                                  1
               R =1, then  c =2R sin C = 2 sin C . In addition,  ab sin C = . Therefore  abc =1. Then
                                                                               1
                                                                  2            4
                                                                                              √
                                                                                       √   √
                                           1 1
                                      1
                                                 1
                                                            1
                       1
                                                                                  1
                           1
                                                      1 1
                                                                    1
                                                                           1
                               1 1

               t =  1 a  + + = ( + )+ ( + )+ ( + ) ≥ 11             ab  + 11  bc  + 11  ca  = 11  c+ a+ b √ √


                                                                                              √ √
                                                                                          √ √
                                                                                                 = bb
                                                                                          √
                                                                                            c+ a+ a+
                                                                                             c+
                                                         1 11
                                                      2 c 1
                                  1 11
                                         11
                                           2 b 1
                               2 a 1
                      11
                          11
                              11
                                              1 11
                                                    11
                  t = =
                           c
                                                 c
                                      b
                       + + + = ( + )+ ( + )+ ( + )
                       b
                        +
                                                            a
                                              2
           √     √ t  aa √ bb  cc    = ( + )+ ( + )+ ( + ) ≥ ≥         ab ab + +  bc bc + +  ca ca = =  abc √ √ abc abc  = =
                                                    cc
                                  2 aa
                                         bb
                                                         2 cc
                                                               aa
                                                          2
                                   2
                                              2 bb
                    √ √
              √
             a + √  b +  c = s
                          √ √
                 a
                a + +  b + +  c = ss . The equal sign can only be obtained if  a = b = c = R =1, which is
                       b
                             c =
               impossible. Hence,  s <t .
                                                                                3    1      1     1
               3.78     a, b, c  are positive numbers and a + b + c ≤ 3, show  ≤    a+1  +  b+1  +  c+1  < 3.
                                                                                2
                                                           1
                                                                                               1
                                                                                         1
                                                                                  1
                                                                   1
                                                  1
               Proof: Since  a, b, c > 0, we have   a+1  < 1,  b+1  < 1,  c+1  < 1 , then   a+1  +  b+1  +  c+1  < 3.
               Mean Inequality implies
                                            Download free eBooks at bookboon.com
                                                            113
   108   109   110   111   112   113   114   115   116   117   118