Page 22 - Elementary Algebra Exercise Book I
P. 22

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers




                                                         2
                                       2
                                            2
                                                                                 2
                                                                                                 2
               Proof:  N =  b−2a+1  =  −a +b+a −2a+1  =  −(a −b)+(a−1) 2  ⇒ (N + 1)(a − b) =(a − 1) .
                              2
                                           2
                                                            2
                             a −b         a −b             a −b
                                               2
               Choose  N +1 = a − 1, then  a − b = a − 1. Thus  a = N +2,
               b = a − a + 1 = (N + 2) − (N +2)+ 1 = N + 4n + 4 − N − 2 + 1 = N + 3N + 3.
                                                             2
                                        2
                     2
                                                                                         2
               Since  N  is a positive integer, then  a, b  are are positive integers as well.
                                                                     √                √
                                                                            2     4     1+ x 4
               1.60     Given  x  =0, find the maximum value of                               .
                                                                       1+ x + x −
                                                                                 x
                            √      2   4  √     4
               Solution:      1+ x + x −    1+ x  = √         x   √
                                      x               1+ x + x +    1+ x 4
                                                               4
                                                           2
                                        x                               x
                           =                          =                                  whose maximum
                                     1
                                                    1
                                                                  1 2
                                                2
                                                                                 1 2
                                  2
                            |x|( x +  x 2 +1+  x +  x 2 )  |x|(  (x − ) +3+  (x − ) + 2)
                                                                  x
                                                                                 x
                           1       √    √              1
               value is  √   √ =     3 −  2 when  x, y  =  x  > 0.
                          3+   2
                                 1                                            b + c
                                          2
               1.61     Given  (b − c) =(a − b)(c − a),  a  =0, evaluate           .
                                 4                                              a










































                                            Download free eBooks at bookboon.com  Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                            22
                                                            22
   17   18   19   20   21   22   23   24   25   26   27