Page 102 - Engineering Mathematics Workbook_Final
P. 102

Differential Equations & Partial Differential Equations

                                                                              y
                       a
            105.  If  y  is a integrating factor of the           109.  Let  ( ) x  be the solution of the ODE
                   differential equation                                  d y      dy
                                                                           2
                   2xy dx −  (3x −   y 2 ) dy =  then the                 dx 2  +  2  dx  +  By =  0 where
                                 2
                                               0
                                                                           
                   value of a is _________                               0 B    1. Then
                                                                         lim   (  )_____________
                       −
                   (a)  4                (b) 4                             →∞
                       −
                   (c)  1                (d) 1                           (a) 0                 (b) 
                                                                                                   B
                                                                         (c) −                (d)
                                             [JAM 2011]                                            2
                                                                                                    [IISC 2011]
            106.  The differential equation                       110.  Consider  y +    by +  cy =  0  where b,
                                                                                     11
                                                                                            1
                   (1 x y+  2  3  +  x y 2 ) dx +                       c are real constants.  If It is given that
                                   2
                                                                               2x
                   (2 x y +     x 3  ) y dy = is exact if                 y =  e  is a solution. Then,
                      +
                          3
                            2
                                           0
                    =_________                                               2                     2
                                                                         (a) b +  4c   0      (b) b +  4c   0
                       1                     3
                   (a)                   (b)                             (c) b −  2  4c   0   (d) b −  2  4c   0
                       2                     2
                                                                                                    [IISC 2007]
                   (c) 2                 (b) 3
                                                                  111.  Consider the second order differential
                                             [JAM 2012]
                                                                                      11
                                                                                             1
                                                                         equation    y +  3y +  2y = . Then
                                                                                                      0
            107.  An integrating factor of                               lim   (  ) is ________
                   (2xy +  3x y +  6y 3 ) dx + ( x +  6y 2 ) dy =  0       →∞
                                                2
                              2
                                                                         (a) a non-zero finite number
                    is ________
                                                                         (b) 0
                                              3
                        3
                   (a)  x                (b)  y
                                                                         (c) −
                                              3y
                        3x
                   (c) e                 (d) e
                                                                         (d)                         [IISC 2007]
                                             [JAM 2012]
                                                                  112.  The general solution of the first order
                               2
                              d y      dy                                differential equation
            108.  Consider         + b    +  cy =  0  where                                 2
                                                                            1
                                                                                  2
                              dx 2     dx                                xy +  2x y −   xe − x  =  0  is ________
                   b and c real constants. If  y =  xe − 5x  is
                                                                                               )
                                                                                            +
                   a solution, then _______                              (a)  ( ) x =  y  e x 2  (x c
                   (a) both b and c are positive                                        2
                                                                                                )
                                                                                             +
                                                                         (b)  ( ) x =  y  e − x  (x c
                   (b) b is positive but c is negative
                   (c) b is negative, but c is positive                  (c)  ( ) x = y  xe +  x 2  c

                   (d) both b and c are negative
                                                                                       +
                                                                             y
                                                                         (d)  ( ) x =  x c            [IISC 2006]
                                              [IISC 2010]


                                                            100
   97   98   99   100   101   102   103   104   105   106   107