Page 162 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 162
138 MÉTODOS CERRADOS
FUNCTION ModFalsePos(xl, xu, es, imax, xr, iter, ea)
iter = 0
fl = f(xl)
fu = f(xu)
DO
xrold = xr
xr = xu – fu * (xl – xu) / (fl – fu)
fr = f(xr)
iter = iter + 1
IF xr <> 0 THEN
ea = Abs((xr – xrold) / xr) * 100
END IF
test = fl * fr
IF test < 0 THEN
xu = xr
fu = f(xu)
iu = 0
il = il +1
If il ≥ 2 THEN fl = fl / 2
ELSE IF test > 0 THEN
xl = xr
fl = f (xl)
il = 0
iu = iu + 1
IF iu ≥ 2 THEN fu = fu / 2
ELSE
ea = 0
END IF
FIGURA 5.15 IF ea < es 0R iter ≥ imax THEN EXIT
Seudocódigo para el mé- END DO
todo de la falsa posición ModFalsePos = xr
modifi cado. END ModFalsePos
falsa posición convergerán, respectivamente, después de 14 y 39 iteraciones. En cambio
el método de la falsa posición modificado convergerá después de 12 iteraciones. De ma-
nera que para este ejemplo el método de la falsa posición modificado es más eficiente que
el de bisección y muchísimo mejor que el método de la falsa posición no modificado.
5.4 BÚSQUEDAS POR INCREMENTOS Y DETERMINACIÓN
DE VALORES INICIALES
Además de verificar una respuesta individual, se debe determinar si se han localizado
todas las raíces posibles. Como se mencionó anteriormente, por lo general una gráfica
de la función ayudará a realizar dicha tarea. Otra opción es incorporar una búsqueda
incremental al inicio del programa. Esto consiste en empezar en un extremo del inter-
valo de interés y realizar evaluaciones de la función con pequeños incrementos a lo
largo del intervalo. Si la función cambia de signo, se supone que la raíz está dentro del
incremento. Los valores de x, al principio y al final del incremento, pueden servir como
valores iniciales para una de las técnicas descritas en este capítulo.
6/12/06 13:49:24
Chapra-05.indd 138
Chapra-05.indd 138 6/12/06 13:49:24

