Page 475 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 475
AJUSTE DE CURVAS
PT5.1 MOTIVACIÓN
Es común que los datos se dan como valores discretos a lo largo de un continuo. Sin em-
bargo, quizás usted requiera la estimación de un punto entre valores discretos. Esta parte
del libro describe las técnicas para ajustar curvas a estos datos para obtener estimaciones
intermedias. Además, usted puede necesitar la versión simplificada de una función com-
plicada. Una manera de hacerlo es calcular valores de la función en un número discreto
de valores en el intervalo de interés. Después, se obtiene una función más simple para
ajustar dichos valores. Estas dos aplicaciones se conocen como ajuste de curvas.
Existen dos métodos generales para el ajuste de curvas que se distinguen entre sí al
considerar la cantidad de error asociado con los datos. Primero, si los datos exhiben un
grado significativo de error o “ruido”, la estrategia será obtener una sola curva que re-
presente la tendencia general de los datos. Como cualquier dato individual puede ser
incorrecto, no se busca intersecar todos los puntos. En lugar de esto, se construye una
curva que siga la tendencia de los puntos tomados como un grupo. Un procedimiento de
este tipo se llama regresión por mínimos cuadrados (figura PT5.1a).
Segundo, si se sabe que los datos son muy precisos, el procedimiento básico será
colocar una curva o una serie de curvas que pasen por cada uno de los puntos en forma
directa. Usualmente tales datos provienen de tablas. Como ejemplos se tienen los valo-
res de la densidad del agua o la capacidad calorífica de los gases en función de la tem-
peratura. La estimación de valores entre puntos discretos bien conocidos se llama
interpolación (figuras PT5.1b y PT5.1c).
PT5.1.1 Métodos sin computadora para el ajuste de curvas
El método más simple para ajustar una curva a los datos consiste en ubicar los puntos y
después trazar una curva que visualmente se acerque a los datos. Aunque ésta es una
operación válida cuando se requiere una estimación rápida, los resultados dependen del
punto de vista subjetivo de la persona que dibuja la curva.
Por ejemplo, en la figura PT5.1 se muestran curvas trazadas a partir del mismo
conjunto de datos por tres ingenieros. El primero no intentó unir los puntos, sino, más
bien, caracterizar la tendencia general ascendente de los datos con una línea recta (figu-
ra PT5.1a). El segundo ingeniero usó segmentos de línea recta o interpolación lineal
para unir los puntos (figura PT5.1b). Ésta es una práctica común en la ingeniería. Si los
valores se encuentran cercanos a ser lineales o están cercanamente espaciados, tal
aproximación ofrece estimaciones que son adecuadas en muchos cálculos de ingeniería.
No obstante, si la relación es altamente curvilínea o los datos están muy espaciados, es
posible introducir errores mediante esa interpolación lineal. El tercer ingeniero utiliza
curvas suaves para tratar de capturar el serpenteado sugerido por los datos (figura PT5.1c).
Un cuarto o quinto ingeniero podría, de igual forma, desarrollar ajustes alternativos.
Obviamente, nuestra meta aquí es desarrollar métodos sistemáticos y objetivos con el
propósito de obtener tales curvas.
6/12/06 13:57:07
Chapra-17.indd 451
Chapra-17.indd 451 6/12/06 13:57:07

