Page 477 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 477
PT5.2 ANTECEDENTES MATEMÁTICOS 453
cisión, se usan polinomios de interpolación. Los datos imprecisos se analizan mediante
una regresión por mínimos cuadrados.
El análisis de la tendencia sirve para predecir o pronosticar valores de la variable
dependiente. Esto puede implicar una extrapolación más allá de los límites de los datos
observados o una interpolación dentro del intervalo de los datos. Por lo común, en todos
los campos de la ingeniería se presentan problemas de este tipo.
Una segunda aplicación del ajuste de curvas experimental en ingeniería es la prue-
ba de hipótesis. Aquí, un modelo matemático existente se compara con los datos obte-
nidos. Si se desconocen los coeficientes del modelo, será necesario determinar los
valores que mejor se ajusten a los datos observados. Por otro lado, si ya se dispone de la
estimación de los coeficientes del modelo sería conveniente comparar los valores predi-
chos del modelo con los observados para probar qué tan adecuado es el modelo. Con
frecuencia, se comparan modelos alternativos y se elige “el mejor” considerando las
observaciones hechas en forma empírica.
Además de las aplicaciones mencionadas en la ingeniería, el ajuste de curvas es
importante para implementar otros métodos numéricos, tales como la integración y la
solución aproximada de ecuaciones diferenciales. Por último, las técnicas de ajuste de
curvas son útiles para obtener funciones simples con la finalidad de aproximar funciones
complicadas.
PT5.2 ANTECEDENTES MATEMÁTICOS
Los fundamentos matemáticos de la interpolación se encuentran en el conocimiento
sobre las expansiones de la serie de Taylor y las diferencias finitas divididas que se
presentaron en el capítulo 4. La regresión por mínimos cuadrados requiere además de
la información en el campo de la estadística. Si usted conoce los conceptos de la media,
desviación estándar, suma residual de los cuadrados, distribución normal e intervalos
de confianza, puede omitir el estudio de las siguientes páginas y pasar directamente a
la sección PT5.3. Si no recuerda muy bien estos conceptos o necesita de un repaso, el
estudio del siguiente material le servirá como introducción a esos temas.
PT5.2.1 Estadística simple
Suponga que en el curso de un estudio de ingeniería se realizaron varias mediciones de
una cantidad específica. Por ejemplo, la tabla PT5.1 contiene 24 lecturas del coeficiente
de expansión térmica del acero. Tomados así, los datos ofrecen una información limita-
da (es decir, que los valores tienen un mínimo de 6.395 y un máximo de 6.775). Se ob-
tiene una mayor comprensión al analizar los datos mediante uno o más estadísticos, bien
seleccionados, que den tanta información como sea posible acerca de las características
específicas del conjunto de datos. Esos estadísticos descriptivos se seleccionan para
TABLA PT5.1 Mediciones del coefi ciente de expansión térmica del acero
–6
[× 10 in/(in · °F)].
6.495 6.595 6.615 6.635 6.485 6.555
6.665 6.505 6.435 6.625 6.715 6.655
6.755 6.625 6.715 6.575 6.655 6.605
6.565 6.515 6.555 6.395 6.775 6.685
6/12/06 13:57:07
Chapra-17.indd 453
Chapra-17.indd 453 6/12/06 13:57:07

