Page 502 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 502
478 REGRESIÓN POR MÍNIMOS CUADRADOS
sección fueran 1 y 0 respectivamente. Por lo anterior, es claro que, más que apoyarse en
un juicio subjetivo, es preferible basar tal conclusión sobre un criterio cuantitativo.
Esto se logra al calcular intervalos de confianza para los parámetros del modelo, de
la misma forma que desarrollamos intervalos de confianza para la media en la sección
PT5.2.3. Regresaremos a este punto al final del capítulo.
17.1.5 Linealización de relaciones no lineales
La regresión lineal ofrece una poderosa técnica para ajustar una mejor línea a los datos.
Sin embargo, se considera el hecho de que la relación entre las variables dependiente e
independiente es lineal. Éste no es siempre el caso, y el primer paso en cualquier análi-
sis de regresión deberá ser graficar e inspeccionar los datos en forma visual, para ase-
gurarnos que sea posible usar un modelo lineal. Por ejemplo, la figura 17.8 muestra
algunos datos que obviamente son curvilíneos. En algunos casos, las técnicas como la
regresión polinomial, que se describen en la sección 17.2, son apropiadas. En otros, se
pueden utilizar transformaciones para expresar los datos en una forma que sea compa-
tible con la regresión lineal.
Un ejemplo es el modelo exponencial
y = a e b1x (17.12)
1
FIGURA 17.8
a) Datos inadecuados para la regresión lineal por mínimos cuadrados. b) Indicación
de que es preferible una parábola.
y
x
a)
y
x
b)
6/12/06 13:57:15
Chapra-17.indd 478 6/12/06 13:57:15
Chapra-17.indd 478

