Page 111 - E-Book SBMPTN Saintek
P. 111

2.­ Jika­f(x)­=­y­maka­f­ ­(y)­=­x
                               –1
            3.­ Fungsi­ f­ mempunyai­ fungsi­ invers­ jika­ f­
                korespon densi (berpasangan) satu-satu.
            4.­ Sifat­­fungsi­invers:
                             I
                •­ f f − 1  =  f   − 1  f ==  x
                   
                •­ (g f) =  − 1  f   − 1  g − 1


                 Rumus­Ringkas­Beberapa­Fungsi­Invers:

                                      x b
                                       −
                 1.­ f(x)­=­ ax b →­ f (x)­=
                                 -1
                           +
                                       a
                         1
                                           )
                 2.­ f(x)­=­  x b →­ f (x)­=(x ba
                            −
                                        +
                                  -1
                         a
                                        2
                 3.­ f(x)­= ax b →­ f (x)­=  x −  b
                                  -1
                            +
                                        a
                         ax b          − dx b
                           +
                                          +
                 4.­ f(x)­=    →­ f (x)­=
                                  –1
                           +
                                         −
                         cx d          cx a
                                         xb
                                           +
                                  -1
                          2
                             b
                 5.­ f(x)­= ax −  →­ f (x)­=­ ±
                                           a
                          2
                 6.­ f(x)­=­ax ­+­bx­+­c­
                                  +
                          −±   4ax D
                           b
                     -1
                    f (x)­=­
                              2a
                                        1
                                  –1
                         a
                 7.­­ f(x)­=­ log nx  →  f (x)­=­ .a x
                                        n
                                     1
                 8.­­ f(x)­=­a nx­­­­­ →  f (x)­=­ . logx
                               –1
                                       a
                                     n










           110
   106   107   108   109   110   111   112   113   114   115   116