Page 127 - E-Book SBMPTN Saintek
P. 127
Bab 20
Transformasi Geometri
A. Pengertian Transformasi b. Refleksi (Pencerminan)
Pencerminan Matriks
Transformasi adalah suatu proses pemetaan suatu Terhadap Pemetaan Transformasi
objek ke objek lain dalam satu bidang. Sumbu X (x, y) → (x, –y) 1 0
Jika titik A (x,y) ditransformasikan oleh transformasi 0 − 1
T akan menghasilkan A' (x',y'). Sumbu Y (x, y) → (–x, y) 1 − 0
0 1
x
x' a b
T
A(x,y) → A'(x',y') atau
=
y
y'
c d Garis Y = X (x, y) → (–x, y) 0 1
1 0
ab
Di mana = matriks transformasi
c d Garis X = –Y (x, y) → (–y, –x) 0 −
1
− 10
B. Jenis-jenis Transformasi Titik asal O (x, y) → (–x, –y) 1 − 0
0 − 1
a. Translasi (Pergeseran) Garis x = k (x, y) → (2k–x, y)
Suatu objek P ditranslasikan oleh T maka Garis y = h (x, y) → (x,
hasilnya P′. 2h–y)
a
( ) b
P(x,y) → P'(x',y') c. Rotasi (Perputaran)
a
−
x' x x = x' a 1. Rotasi terhadap titik O (0,0)
+
= →
b
−
y
y' y = y' b Matriks
Rotasi Pemetaan
Transformasi
T(a, b) berarti: π atau − π (x, y) → (–y, x) 0 −
1
1. Objek digeser sejauh a satuan ke kanan 2 2 1 0
(+)/kiri (–). π 3π (x, y) → (y, –x)
− atau 0 1
2. Objek digeser sejauh b satuan ke atas (+)/ 2 2 − 10
bawah (–).
±π (x, y) → (–x, –y) 1 − 0
0 − 1
126

