Page 87 - E-Book SBMPTN Saintek
P. 87

Bab    3



               Bentuk Akar











            A.   Sifat-Sifat Bentuk Akar                                          b ( a +  b ) 2
                                                       •     a +  b  =  a +  b  ×  a +  =
                                                                                         −
            a.  Bentuk Umum Akar                             a −  b     a −  b  a +  b  ab
                      m             m
                n m    n       m
                 a  =  a
                                  a  = a  2            C.   Persamaan Bentuk Akar
                       1            1
                n  a   = a n   a   = a 2
                                                                 +
                                                       •    (a b) 2 ab = a +  b , syarat: a > b > 0
                                                              +
            b.   Penjumlahan dan Pengurangan               Bukti:
               1.  ac +  bc = (a b) c                       (a b) 2 ab
                              +
                                                              +
                                                                 +
               2.  ac −  bc = (a b) c                      =  a +  2 ab +  b
                              −
                                                           =   a +  ab +  ab +  b
            c.   Perkalian dan Pembagian
                               2                           =    ( a ) +  ab +  ab +  ( b )
                                                                               2
                                                                 2
                           2
                               2
                1.  a ⋅  a = a = a = a
                                                           =   a( a +  b) +  b( a +  b)
                         n
                  n
                2.  a ⋅ n  b = ab
                                                           =   ( a +  b)( a +  b)
                  n m
                3.  a  ⋅ n p  n mp+                                  2
                        a = a
                                                           = ( a +  b ) =  a +  b
                4.   n  p  a =  np a
                                                                                s
                                                                                   a
                                                       •    (a b) 2 ab = a −  b,syarat a >t: a > b > 0
                                                                                 ar
                                                                                y
                                                              +
                                                                 −
                                                                                       b >
                                                                                          0

                  n  a  a
                5.   = n                                   Bukti:
                  n  b  b
                                                                 −
                                                              +
                                                            (a b) 2 ab
            B.   Merasionalkan  Penyebut
                                                           =  a 2 ab +  b
                                                               −
                 a    a   b    ab                          =
            •      =    ×    =                                a −  ab −  ab + b
                 b    b   b     b                          =    2              2
                 a    a   b     ab                            ( a ) −  ab −  ab +  ( b )
            •      =    ×    =
                 b    b   b     b                          =   a( a −  b) −  b( a −  b)
                   c        c      a −  b
            •            =      ×                          =
                 a +  b    a +  b  a −  b                     ( a −  b)( a −  b)
                         c( a −  b)                        =  ( a −  b) =  a −  b
                                                                    2
                        =
                            ab
                             −
           86
   82   83   84   85   86   87   88   89   90   91   92