Page 137 - Buku Materi Pembelajaran Rangkaian Listrik II dan Praktikum
P. 137
I e j(ωt+ φ) = jωCV e j(ωt+ φ) [2.23]
m
m
dv
i = C dt I = jωC V
+ +
v C V C
- -
(a) (b)
Gambar 2.6 Hubungan arus dan tegangan pada kapasitor dalam
(a) domain waktu, i = C dv/dt dan
(b) domain frekuensi, I = jωC V.
jωt
Kedua ruas dari persamaan [2.23] dibagi dengan e dan hasilnya sebagaimana
dinyatakan oleh persamaan [2.24].
jθ
I e jφ = jωCV e [2.24]
m
m
Dan persamaan [2.24] dalam bentuk polar dinyatakan sebagaimana persamaan
[2.25].
I ∠ φ = jωCV ∠ θ [2.25]
m
m
Persamaan [2.25] dinyatakan oleh persamaan [2.26].
= jωC [2.26]
Catatan: arus dan tegangan fasor, ditulis dengan huruf kapital bold.
Persamaan [2.26] direpresentasikan pada gambar 2.6(b).
o
Karena j = 1 ∠ 90 maka persamaan [2.26] dapat dinyatakan oleh persamaan
[2.27].
0
0
I ∠ φ = (1 ∠ 90 )(ωCV ∠ θ) = ωCV ∠ (θ + 90 ) [2.27]
m
m
m
44

