Page 19 - GeoPRISMS_Newsletter_Spring2018_Neat
P. 19

The more-complicated observatory at Site U1518 contains multi-  to date. Wellhead sensors in both observatories will provide data on
        level pressure sensing above, within, and below the fault zone, as  changes in pressure at the seafloor, which will help to resolve vertical
        well as a string of autonomous miniature temperature loggers.  deformation of the seafloor during SSEs (e.g., Wallace et al., 2016).
        OsmoSamplers and an OsmoFlowmeter (see Jannasch et al., 2004;
        Solomon et al., 2009) will capture time series of fluid-flow rates and   IODP Expeditions 372 and 375 are pioneering because they are
        fluid chemistry within the fault zone. The observatory at Site U1519   the first to target slow-slip event processes. Ultimately, the team of
        involves a simpler design, with two levels of formation-pressure   sixty scientists from thirteen countries who participated in these
        sensing and a distributed string of temperature loggers. Pressure   expeditions will integrate their coring, logging, and observatory
        sensing in the formation provides a sensitive indicator of volumetric   data with detailed post-expedition lab studies and modeling to test a
        strain during SSEs (e.g., Araki et al., 2017); those results will greatly  broad suite of hypotheses concerning the fundamentals of slow-slip
        improve the spatiotemporal resolution of offshore Hikurangi SSEs  events, and their relationship to great megathrust earthquakes. The
        and enable detection of SSEs much smaller than those documented  central theme addresses several important goals of GeoPRISMS. ■


            References




        Araki, E., D.M. Saffer, A. Kopf, L.M. Wallace, T. Kimura, Y. Machida, S. Ide,   599–607. doi.org/10.1038/ngeo940
            (2017), Recurring and triggered slow slip events near the trench at   Ranero, C.R., I. Grevemeyer, U. Sahling, U. Barckhausen, C. Hensen, K.
            the Nankai Trough subduction megathrust. Science, 356, 1157-1160.   Wallmann, W. Weinrebe, P. Vannucchi, R. von Huene, K. McIntosh,
            doi: 10.1126/science.aan3120                           (2008), Hydrogeological system of erosional convergent margins and
        Barker, D.H.N., R. Sutherland, S. Henrys, S. Bannister, (2009), Geometry   its  influence  on  tectonics  and  interplate  seismogenesis.  Geochem
            of the Hikurangi subduction thrust and upper plate, North Island,   Geophys Geosyst, 9(3), Q03S04. doi.org/10.1029/2007GC001679
            New  Zealand.  Geochem  Geophys  Geosyst,  10(2),  Q02007.  doi.
            org/10.1029/2008GC002153                            Saffer, D.M., L.M. Wallace, (2015), The frictional, hydrologic, metamorphic
        Bell,  R.,  R.  Sutherland,  D.H.N.  Barker,  S.  Henrys,  S.  Bannister,  L.M.   and thermal habitat of shallow slow earthquakes. Nat. Geosci., 8(8),
            Wallace,  J.  Beavan,  (2010),  Seismic  reflection  character  of  the   594–600. doi.org/10.1038/ngeo2490
            Hikurangi  subduction  interface,  New  Zealand,  in  the  region  of   Saffer, D.M., L.M. Wallace, K. Petronotis, (2017), Hikurangi subduction
            repeated Gisborne slow slip events. Geophys. J. Int., 180(1), 34–48.   margin coring and observatories: unlocking the secrets of slow slip
            doi.org/10.1111/j.1365-246X.2009.04401.x               through drilling to sample and monitor the forearc and subducting
        Chang, C., L.C. McNeill, J.C. Moore, W. Lin, M. Conin, Y. Yamada, (2010),   plate.  International  Ocean  Discovery  Program  Expedition  375
            In situ stress state in the Nankai accretionary wedge estimated from   Scientific  Prospectus:  College  Station,  TX  (International  Ocean
            borehole wall failures. Geochem Geophys Geosyst, 11:Q0AD04. doi.  Discovery Program). doi.org/10.14379/iodp.sp.375.2017
            org/10.1029/2010GC003261                            Saffer,  D.M.,  M.B.  Underwood,  A.W.  McKiernan,  (2008),  Evaluation  of
        Davy, B., K. Hoernle, R. Werner, (2008), Hikurangi Plateau: crustal structure,   factors  controlling  smectite  transformation  and  fluid  production
            rifted  formation,  and  Gondwana  subduction  history.  Geochem   in subduction zones: application to the Nankai Trough. Island Arc,
            Geophys Geosyst, 9(7):Q07004. doi.org/10.1029/2007GC001855
        Hensen,  C.,  K.  Wallmann,  M.  Schmidt,  C.R.  Ranero,  E.  Suess,  (2004),   17(2), 208–230. doi.org/10.1111/j.1440-1738.2008.00614.x
            Fluid expulsion related to mud extrusion off Costa Rica—a window   Schwartz, S.Y., J.M. Rokosky, (2007), Slow slip events and seismic tremor at
            to the subducting slab. Geology, 32(3), 201–204. doi.org/10.1130/  circum-Pacific subduction zones. Reviews of Geophysics, 45:RG3004.
            G20119.1                                               doi.org/10.1029/2006RG000208
        Huffman, K.A., D.M. Saffer, (2016), In situ stress magnitudes at the toe   Solomon, E.A., M. Kastner, C.G. Wheat, H. Jannasch, G. Robertson, E.E.
            of the Nankai Trough Accretionary Prism, offshore Shikoku Island,   Davis,  J.D.  Morris,  (2009),  Long-term  hydrogeochemical  records
            Japan.  J.  Geophys.  Res.:  Solid  Earth,  121(2),  1202–1217.  doi.  in  the  oceanic  basement  and  forearc  prism  at  the  Costa  Rica
            org/10.1002/2015JB012415                               subducti. Earth Planet. Sci. Lett., 282, 240–251. doi.org/10.1016/j.
        Jannasch, H.W., C.G. Wheat, J.N. Plant, M. Kastner, D.S. Stakes, (2004),   epsl.2009.03.022
            Continuous  chemical  monitoring  with  osmotically  pumped  water   Wallace,  L.M.,  J.  Beavan,  (2010),  Diverse  slow  slip  behavior  at  the
            samplers:  OsmoSampler  design  and  applications.  Limnology  and   Hikurangi subduction margin, New Zealand. J. Geophys. Res.: Solid
            Oceanography: Methods, 2(2), 102–113.
        Kopf, A., G. Mora, A. Deyhle, S. Frape, R. Hesse, (2003), Fluid geochemistry   Earth, 115(B12):B12402. doi.org/10.1029/2010JB007717
            in the Japan Trench forearc (ODP Leg 186): a synthesis. In Suyehiro,   Wallace,  L.M.,  J.  Beavan,  R.  McCaffrey,  D.  Darby,  (2004),  Subduction
            K., Sacks, I.S., Acton, G.D., and Oda, M. (Eds.), Proceedings of the   zone  coupling  and  tectonic  block  rotations  in  the  North  Island,
            Ocean  Drilling  Program,  Scientific  Results,  186:  College  Station,   New Zealand. J. Geophys. Res.: Solid Earth, 109(B12):B12406. doi.
            TX  (Ocean  Drilling  Program),  1–23.  doi.org/10.2973/odp.proc.  org/10.1029/2004JB003241
            sr.186.117.2003                                     Wallace,  L.M.,  S.C.  Webb,  Y.  Ito,  K.  Mochizuki,  R.  Hino,  S.  Henrys,  S.Y.
        Pecher, I.A., P.M. Barnes, L.J. LeVay, and the Expedition 372 Scientists,   Schwartz,  A.F.  Sheehan,  (2016),  Slow  slip  near  the  trench  at  the
            (2018),  IODP  Expedition  372  Preliminary  Report,  Creeping  Gas   Hikurangi subduction zone, New Zealand. Science, 352(6286), 701–
            Hydrate Slides and Hikurangi LWD. College Station, TX (International   704. doi.org/10.1126/science.aaf2349
            Ocean Discovery Program). doi.org/10.14379/iodp.pr.372.2018
        Pedley,  K.L.,  P.M.  Barnes,  J.R.  Pettinga,  K.B.  Lewis,  (2010),  Seafloor   Wallace, L.M., Y. Kaneko, S. Hreinsdottir, I. Hamling, Z. Peng, N. Bartlow,
            structural geomorphic evolution of the accretionary frontal wedge   E. D’Anastasio, and B. Fry, (2017), Large-scale dynamic triggering of
                                                                   shallow slow slip enhanced by overlying sedimentary wedge. Nat.
            in  response  to  seamount  subduction,  Poverty  Indentation,  New   Wech, A.G., K.C. Creager, (2011), A continuum of stress, strength and slip
 Photo by Tim Fulton, IODP-TAMU  Peng, Z., J. Gomberg, (2010), An integrated perspective of the continuum   in the Cascadia subduction zone. Nat. Geosci., 4(9), 624–628. doi.
                                                                   Geosci., 10, 765–770. doi: 10.1038/ngeo3021
            Zealand.  Marine  Geology,  270(1–4),  119–138.  doi.org/10.1016/j.
            margeo.2009.11.006
                                                                   org/10.1038/ngeo1215
            between earthquakes and slow-slip phenomena. Nat. Geosci., 3(9),
                                                                          Spring 2018  Issue No. 40  GeoPRISMS Newsletter  •  19
   14   15   16   17   18   19   20   21   22   23   24