Page 200 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 200
176 RAÍCES DE POLINOMIOS
Para i = 0,
= 24
s = a 0
a = r = 6
0
r = –24 + 6(4) = 0
Así, el resultado, como se esperaba, es el cociente a + a x = 6 + x, con un residuo de
1
0
cero.
También es posible dividir entre polinomios de grado superior. Como se verá más
adelante en este capítulo, la tarea más común es dividir entre un polinomio de segundo
grado o parábola. La subrutina de la figura 7.2 resuelve el problema más general de di-
vidir un polinomio a de grado n entre un polinomio d de grado m. El resultado es un
polinomio q de grado (n – m), con un polinomio de grado (m – 1) como el residuo.
Ya que cada raíz calculada se conoce únicamente en forma aproximada, se observa
que la deflación es sensible al error de redondeo. En algunos casos puede crecer a tal
punto que los resultados lleguen a no tener sentido.
Algunas estrategias generales pueden aplicarse para minimizar el problema. Por
ejemplo, el error de redondeo está afectado por el orden en que se evalúan los términos.
La deflación hacia adelante se refiere al caso donde los coeficientes del nuevo polinomio
están en orden de potencias descendentes de x (es decir, del término de mayor grado al
FIGURA 7.2
Algoritmo que divide un polinomio (defi nido por sus coefi cientes a) entre un polinomio de
grado menor d.
SUB poldiv(a, n, d, m, q, r)
DOFOR j = 0, n
r(j) = a(j)
q(j) = 0
END DO
DOFOR k = n–m, 0, –1
q(k+1) = r(m+k) / d(m)
DOFOR j = m+k–1, k, –1
r(j) = r(j)–q(k+1) * b(j–k)
END DO
END DO
DOFOR j = m, n
r(j) = 0
END DO
n = n–m
DOFOR i = 0, n
a(i) = q(i+1)
END DO
END SUB
6/12/06 13:51:23
Chapra-07.indd 176 6/12/06 13:51:23
Chapra-07.indd 176

