Page 270 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 270
246 ECUACIONES ALGEBRAICAS LINEALES
Por último, se incluye un epílogo al final de la parte tres. Este repaso comprende un
análisis de las ventajas y desventajas relevantes para la implementación de los métodos
en la práctica de la ingeniería. Esta sección también resume las fórmulas importantes y
los métodos avanzados relacionados con las ecuaciones algebraicas lineales. Como tal,
puede usarse antes de los exámenes o en la práctica profesional, a manera de actualiza-
ción, cuando se tenga que volver a considerar las ecuaciones algebraicas lineales.
PT3.3.2 Metas y objetivos
Objetivos de estudio. Al terminar la parte tres, usted será capaz de resolver problemas
con ecuaciones algebraicas lineales y de valorar la aplicación de esas ecuaciones en muchos
campos de la ingeniería. Deberá esforzarse en dominar varias técnicas y su confiabilidad,
así como conocer las ventajas y desventajas para seleccionar el “mejor” método (o métodos)
para cualquier problema en particular. Además de estos objetivos generales, deberán asi-
milarse y dominarse los conceptos específicos enlistados en la tabla PT3.1.
Objetivos de cómputo. Sus objetivos de cómputo fundamentales son ser capaz de
resolver un sistema de ecuaciones algebraicas lineales y evaluar la matriz inversa. Usted
deberá tener subprogramas desarrollados para una descomposición LU, tanto de matri-
ces completas como tridiagonales. Quizá desee también tener su propio software para
implementar el método Gauss-Seidel.
Deberá saber cómo usar los paquetes para resolver ecuaciones algebraicas lineales
y encontrar la matriz inversa. También deberá conocer muy bien la manera en que las
mismas evaluaciones se pueden implementar en paquetes de uso común, como Excel y
MATLAB, así como con bibliotecas de software.
TABLA PT3.1 Objetivos específi cos de estudio de la parte tres.
1. Comprender la interpretación gráfi ca de sistemas mal condicionados y cómo se relacionan con el
determinante.
2. Conocer la terminología: eliminación hacia adelante, sustitución hacia atrás, ecuación pivote y
coefi ciente pivote.
3. Entender los problemas de división entre cero, errores de redondeo y mal condicionamiento.
4. Saber cómo calcular el determinante con la eliminación de Gauss.
5. Comprender las ventajas del pivoteo; notar la diferencia entre pivoteos parcial y completo.
6. Saber la diferencia fundamental entre el método de eliminación de Gauss y el de Gauss-Jordan y
cuál es más efi ciente.
7. Reconocer el modo en que la eliminación de Gauss se formula como una descomposición LU.
8. Saber cómo incorporar el pivoteo y la inversión de matrices en un algoritmo de descomposición
LU.
9. Conocer el modo de interpretar los elementos de la matriz inversa al evaluar cálculos de respuesta
al estímulo en ingeniería.
10. Percatarse del modo de usar la inversa y las normas de matrices para evaluar la condición de un
sistema.
11. Entender cómo los sistemas bandeados y simétricos pueden descomponerse y resolverlos de
manera efi ciente.
12. Entender por qué el método de Gauss-Seidel es adecuado para grandes sistemas de ecuaciones
dispersos.
13. Comprender cómo valorar la diagonal dominante de un sistema de ecuaciones y el modo de
relacionarla con el sistema para que pueda resolverse con el método de Gauss-Seidel.
14. Entender la fundamentación de la relajación; saber dónde son apropiadas la bajorrelajación y la
sobrerrelajación.
6/12/06 13:52:32
Chapra-09.indd 246
Chapra-09.indd 246 6/12/06 13:52:32

