Page 387 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 387
CAPÍTULO 13
Optimización unidimensional
no restringida
Esta sección describirá técnicas para encontrar el mínimo o el máximo de una función
de una sola variable, f(x). Una imagen útil que muestra lo anterior es la consideración
unidimensional a la “montaña rusa”, como la función representada en la figura 13.1.
Recuerde que en la parte dos, la localización de una raíz fue complicada por el hecho
de que una sola función puede tener varias raíces. De manera similar, los valores óptimos
tanto locales como globales pueden presentarse en problemas de optimización. A tales
casos se les llama multimodales. En casi todos los ejemplos, estaremos interesados en
encontrar el valor máximo o mínimo absoluto de una función. Así, debemos cuidar de
no confundir un óptimo local con un óptimo global.
Distinguir un extremo global de un extremo local puede ser generalmente un proble-
ma difícil. Existen tres formas comunes de resolver este problema. Primero, una idea del
comportamiento de las funciones unidimensionales algunas veces llega a obtenerse en
forma gráfica. Segundo, determinar el valor óptimo con base en valores iniciales, los
cuales varían ampliamente y son generados quizá en forma aleatoria, para después se-
leccionar el mayor de éstos como el global. Por último, cambiar el punto de inicio aso-
ciado con un óptimo local y observar si la rutina empleada da un mejor punto, o siempre
regresa al mismo punto. Aunque estos métodos tienen su utilidad, el hecho es que en
algunos problemas (usualmente los más grandes) no existe una forma práctica de asegu-
rarse de que se ha localizado un valor óptimo global. Sin embargo, aunque debe tenerse
cuidado se tiene la fortuna de que en muchos problemas de la ingeniería se localiza el
óptimo global en forma no ambigua.
FIGURA 13.1
Una función que se aproxima asintóticamente a cero en más y menos ∞ y que tiene dos
puntos máximos y dos puntos mínimos en la vecindad del origen. Los dos puntos a la
derecha son los óptimos locales; mientras que los dos de la izquierda son globales.
f(x)
Máximo Máximo
global local
x
Mínimo
global Mínimo
local
6/12/06 13:55:05
Chapra-13.indd 363 6/12/06 13:55:05
Chapra-13.indd 363

