Page 404 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 404
380 OPTIMIZACIÓN MULTIDIMENSIONAL NO RESTRINGIDA
Debemos hacer notar que se dispone de técnicas de búsqueda más sofisticadas.
Éstas constituyen procedimientos heurísticos que fueron desarrollados para resolver
problemas no lineales y/o discontinuos, que la optimización clásica usualmente no ma-
neja bien. La simulación de recocido, la búsqueda tabú, las redes neuronales artificiales
y los algoritmos genéticos son unos pocos ejemplos. El más ampliamente utilizado es el
algoritmo genético, en un número considerable de paquetes comerciales. En Holland
(1975), iniciador del procedimiento del algoritmo genético, y Davis (1991) y Goldberg
(1989) se encuentra un buen repaso de la teoría y la aplicación del método.
14.1.2 Búsquedas univariadas y búsquedas patrón
Es muy agradable tener un procedimiento de optimización eficiente que no requiera
evaluar las derivadas. El método de búsqueda aleatoria, previamente descrito, no requie-
re la evaluación de la derivada, pero no es muy eficiente. En esta sección se describe un
procedimiento, el método de búsqueda univariada, que es más eficiente y además no
requiere la evaluación de la derivada.
La estrategia básica del método de búsqueda univariada consiste en trabajar sólo
con una variable a la vez, para mejorar la aproximación, mientras las otras se mantienen
constantes. Puesto que únicamente cambia una variable, el problema se reduce a una
secuencia de búsquedas en una dimensión, que se resuelven con una diversidad de mé-
todos (dentro de ellos, los descritos en el capítulo 13).
Realicemos una búsqueda univariada por medio de una gráfica, como se muestra
en la figura 14.3. Se comienza en el punto 1, y se mueve a lo largo del eje x con y cons-
tante hacia el máximo en el punto 2. Se puede ver que el punto 2 es un máximo, al ob-
servar que la trayectoria a lo largo del eje x toca justo una línea de contorno en ese
punto. Luego, muévase a lo largo del eje y con x constante hacia el punto 3. Continúa
este proceso generándose los puntos 4, 5, 6, etcétera.
FIGURA 14.3
Descripción gráfi ca de cómo se presenta una búsqueda univariada.
y
5
6
3
4
1
2
x
6/12/06 13:55:31
Chapra-14.indd 380 6/12/06 13:55:31
Chapra-14.indd 380

