Page 410 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 410
386 OPTIMIZACIÓN MULTIDIMENSIONAL NO RESTRINGIDA
Se puede obtener una mejor comprensión al inspeccionar la figura 14.7. Como se
indica, la dirección de ascenso con mayor pendiente es perpendicular, u ortogonal, al
contorno en la elevación en la coordenada (2, 2). Ésta es una propiedad del gradiente.
Además de definir la trayectoria de mayor pendiente, también se utiliza la primera
derivada para determinar si se ha alcanzado un óptimo. Como en el caso para una función
de una dimensión, si las derivadas parciales con respecto a x y y son cero, se ha alcan-
zado el óptimo en dos dimensiones.
El hessiano. En problemas de una dimensión, tanto la primera como la segunda deri-
vada ofrecen información valiosa en la búsqueda del óptimo. La primera derivada
a) proporciona una trayectoria de máxima inclinación de la función y b) indica que se
ha alcanzado el óptimo. Una vez en el óptimo, la segunda derivada indicará si es un
máximo [f ″(x) negativo] o un mínimo [f″(x) positivo]. En los párrafos anteriores, se
ilustró cómo el gradiente proporciona la mejor trayectoria en problemas multidimensio-
nales. Ahora, se examinará cómo se usa la segunda derivada en este contexto.
Puede esperarse que si las segundas derivadas parciales respecto de x y y son nega-
tivas ambas, entonces se ha alcanzado un máximo. La figura 14.8 muestra una función
en la que esto no es cierto. El punto (a, b) de esta gráfica parece ser un mínimo cuando
se observa a lo largo ya sea de la dimensión x o de la y. En ambos casos, las segundas
derivadas parciales son positivas. Sin embargo, si la función se observa a lo largo de la
FIGURA 14.8
Un punto silla (x = a y y = b). Observe que al ser vista la curva a lo largo de las direcciones
x y y, parece que la función pasa por un mínimo (la segunda derivada es positiva); mientras
que al verse a lo largo del eje x = y, es cóncava hacia abajo (la segunda derivada es
negativa).
f (x, y)
(a, b)
x
y
y = x
6/12/06 13:55:32
Chapra-14.indd 386
Chapra-14.indd 386 6/12/06 13:55:32

