Page 92 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 92
68 APROXIMACIONES Y ERRORES DE REDONDEO
donde a se le denomina épsilon de la máquina, el cual se calcula como
= b 1–t (3.11)
donde b es el número base y t es el número de dígitos significativos en la mantisa. Ob-
serve que las desigualdades en las ecuaciones (3.9) y (3.10) quieren decir que éstos son
los límites de los errores. Es decir, especifican los casos extremos.
EJEMPLO 3.5 Épsilon de la máquina
Planteamiento del problema. Determine el épsilon de la máquina y verifique su
efectividad para caracterizar los errores del sistema numérico del ejemplo 3.4. Suponga
que se usa al corte.
Solución. El sistema de punto flotante hipotético del ejemplo 3.4 empleaba valores de
base b = 2, y número de bits de la mantisa t = 3. Por lo tanto, el épsilon de la máquina
debe ser [ecuación (3.11)]
1–3
= 2 = 0.25
En consecuencia, el error de cuantificación relativo estará limitado por 0.25, para el
corte. El error relativo más grande debería ocurrir para aquellas cantidades que caen
justo debajo del límite superior del primer intervalo entre números equidistantes suce-
sivos (véase figura 3.8). Aquellos números que caen en los intervalos sucesivos siguien-
tes tendrán el mismo valor de ∆x pero un mayor valor de x y, por lo tanto, tendrán un
error relativo bajo. Un ejemplo de un error máximo sería un valor que cae justo por
debajo de límite superior del intervalo entre (0.125000) y (0.156250) . Para este caso,
10
10
el error sería menor a
0 03125.
= 025.
0 125000.
Entonces, el error es como se predijo mediante la ecuación (3.9).
FIGURA 3.8
El error de cuantifi cación más grande ocurrirá para aquellos valores que caigan justo debajo
del límite superior del primero de una serie de intervalos equiespaciados.
Error relativo
mayor
El hecho de que los errores de cuantificación dependan de la magnitud tiene varias
aplicaciones prácticas en los métodos numéricos. Muchas de ellas están relacionadas
con la comúnmente empleada operación de probar si dos números son iguales. Ello
6/12/06 13:44:15
Chapra-03.indd 68
Chapra-03.indd 68 6/12/06 13:44:15

